Answer:
b. E (about 329 Hz)
Explanation:
Given data:
Initial length of the string l1= 24 in
initial frequency f1= 247 Hz
changed length l2= 18 in
Then we have to find the changed frequency f2= ?
We already now that
frequency f ∝ 1/length of the string l
therefore,

⇒
⇒
⇒
9 thats you electron number and what makes up 9 is 3
Answer: The temperature and the number of molecules must reamain constant for the law to apply, and as the pressure increases, the volumen decreases proportionally.
Boyle's law states that if the temperature, T, of a given mass of gas, remains constant, the Volume, V, of the gas is in inverse relation to the pressure, p; i.e.
pV = constant (for a given mass of gas, at constant T)
Then, if p increases, V decreases proportionally to keep the relation pV = constant.
Answer:
5.865 μs
Explanation:
t₀ = Time taken to decay a muon = 2.20 μs
c = Speed of Light in vacuum = 3×10⁸ m/s
v = Velocity of muon = 0.927 c
t = Lifetime observed
Time dilation

∴Lifetime observed for muons approaching at 0.927 the speed of light is 5.865 μs
Answer:
θ₁ = 0.5 revolution
Explanation:
We will use the conservation of angular momentum as follows:

where,
I₁ = initial moment of inertia = 18 kg.m²
I₂ = Final moment of inertia = 3.6 kg.m²
ω₁ = initial angular velocity = ?
ω₂ = Final Angular velocity =
= 1.67 rev/s
Therefore,

where,
θ₁ = revolutions if she had not tucked at all = ?
t₁ = time = 1.5 s
Therefore,

<u>θ₁ = 0.5 revolution</u>