Supposing the carousel is rotating with constant speed, the movement is uniform angular motion.
One advantage is that whatever resource it is, it will never run out and you wont have to worry about not having it. A second is that there is going to be enough for everyone to use however much they want without there having to be a limit on how much you use.
Answer:
a) L=0. b) L = 262 k ^ Kg m²/s and c) L = 1020.7 k^ kg m²/s
Explanation:
It is angular momentum given by
L = r x p
Bold are vectors; where L is the angular momentum, r the position of the particle and p its linear momentum
One of the easiest ways to make this vector product is with the use of determinants
![{array}\right] \left[\begin{array}{ccc}i&j&k\\x&y&z\\px&py&pz\end{array}\right]](https://tex.z-dn.net/?f=%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%26z%5C%5Cpx%26py%26pz%5Cend%7Barray%7D%5Cright%5D)
Let's apply this relationship to our case
Let's start by breaking down the speed
v₀ₓ = v₀ cosn 45
voy =v₀ sin 45
v₀ₓ = 9 cos 45
voy = 9 without 45
v₀ₓ = 6.36 m / s
voy = 6.36 m / s
a) at launch point r = 0 whereby L = 0
. b) let's find the position for maximum height, we can use kinematics, at this point the vertical speed is zero
vfy² = voy²- 2 g y
y = voy² / 2g
y = (6.36)²/2 9.8
y = 2.06 m
Let's calculate the angular momentum
L= ![\left[\begin{array}{ccc}i&j&k\\x&y&0\\px&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%260%5C%5Cpx%260%260%5Cend%7Barray%7D%5Cright%5D)
L = -px y k ^
L = - (m vox) (2.06) k ^
L = - 20 6.36 2.06 k ^
L = 262 k ^ Kg m² / s
The angular momentum is on the z axis
c) At the point of impact, at this point the height is zero and the position on the x-axis is the range
R = vo² sin 2θ / g
R = 9² sin (2 45) /9.8
R = 8.26 m
L =
L = - x py k ^
L = - x m voy
L = - 8.26 20 6.36 k ^
L = 1020.7 k^ kg m² /s
i don't know the anss , sorry.
19-? Is the exact p.d across the 114-?resistor.
Current will different
But p.d will same in parallel circuit .