We have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.
A=B
Method 1:
We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5
B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º
Answer:
a=7; A=50º
b=7; B=50º
<span>c=9; C=80º
Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º
B=A=50º
A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º
Answer:
</span>a=7; A=50º
b=7; B=50º
<span>c=9; C=80º</span>
Slope = raise / run
(211.1 - 212.0) / (0.5-0) = - 1.8
(210.2 - 211.1) / (1.0-0.5) = - 1.8
(208.4 - 210.2) / (2.0 - 1.0) = - 1.8
You can check, the other points. The slope is constant because the function is a linear equation,
Answer: - 1.8
Answer:
C. Quadrant III
Step-by-step explanation:
Answer: B. (-2, -1)
Step-by-step explanation:
(-2, -1) has a y-coordinate (-1) closer to 0 than the rest of the y-coordinates. And 0 would be turning point in this equation.