<span>1. The correct option is A, THE OXYGEN ATOM HAS A NEGATIVE CHARGE. A water molecule is made up of two atoms of hydrogen and one atom of oxygen. The molecules of water are arranged in such a way that, the negative hydrogen atom is attracted to the positive hydrogen atom and the overall structure is bent. Because oxygen is more electronegative than hydrogen, oxygen atom draws the shared electrons toward itself , this gives the oxygen end of the molecule a partial negative charge and the hydrogen end, a partial positive charge.
2. The correct option is: WITHOUT THE PROPER BALANCE OF WATER, CHEMICAL REACTIONS WILL NOT TAKE PLACE. Metabolic chemical reactions take place in living cells all the time because water, which is a necessary condition for the reaction is in place. Th fluids find in the cells are mostly water; water creates suitable conditions for biochemical reactions to take place. Without water, the cells will not be able to carry out any chemical reaction.
3. The correct option is A. Hydrogen bond allows oxygen and water molecules to be bonded together. Hydrogen bonds are weak interactions that formed between the hydrogen with a patial positive end and oxygen with a patial negative end. The hydrogen bond in water is responsible for the unique properties associated with water.</span><span />
Answer:
Mass = 57.05 g
Explanation:
Given data:
Volume of SO₂ = 20.0 L
Temperature = standard = 273 K
Pressure = standard = 1 atm
Mass of SO₂ = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1 atm × 20.0 L / 0.0821 atm.L/ mol.K× 273 k
n = 20.0 / 22.41/mol
n = 0.89 mol
Mass of SO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 64.1 g/mol
Mass = 57.05 g
First, let's determine the number of moles of carbon atoms by using molar mass. Then, using Avogadro's number, we can find the number of C atoms:
*1 mole of C3H8O= (12.0x3)+(1.0x8)+(16.0x1) = 60.0g/mol
25.0 grams C3H8O x (1 mole C3H8O/60.0 grams) = 0.417 mol
0.417mol C3H8O has (3 x 0.417 moles) C atoms = 1.251 moles C atoms
1.251 moles C atoms x(6.022x10^23 atoms/mol) = 9.42x10^23 C atoms.
The answer is in 3 significant figures, as that's what we have in the given, and we matched it with our rounding of the atomic masses from the periodic table.
You can do this all in one equation written left to right, just exclude the intermediate answers. Just easier to show it this way on the computer screen.
The atomic number of Nickle is 28, so its electronic configuration in ground state is,
Ni = 28 e⁻ = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁸
So, when Nickle looses two electrons it will attain +2 charge, remaining with 26 electrons as,
Ni⁺² = 26 e⁻ = 1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁸
Ni looses electrons from 4s shell instead instead of 3d shell because the 4s shell electrons are at larger distance as compared to 3d, hence, felting less nuclear charge and easily lost.