60.7 ml is the volume of a sample of CO2 at STP that has a volume of 75.0mL at 30.0°C and 91kPa.
Explanation:
Data given:
V1 = 75 ml
T1 = 30 Degrees or 273.15 + 30 = 303.15 K
P1 = 91 KPa
V2 =?
P2 = 1 atm or 101.3 KPa
T2 = 273.15 K
At STP the pressure is 1 atm and the temperature is 273.15 K
applying Gas Law:
= 
putting the values in the equation of Gas Law:
V2 = 
V2 = 
V2 = 60.7 ml
at STP the volume of carbon dioxide gas is 60.7 ml.
1 is B (Just remember to have the same number of atoms on both sides)
2 is B (A precipitate is a solid forming from 2 liquids)
Models in science help you get the idea of what something looks like that's why your teacher may ask you to draw a diagram to help you remember what the object looks like.
Hope this helps.
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.
All of the boxes in the chart are Gg
1. 100%
2. 0%