The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
Answer:
a, g, c
Explanation:
The conversion of the stable cyclopentane into Trans-1, 2dibromocyclopentane will require three step reactions.
The first is to convert the compound into a cyclopentene, through the addition of Bromine water under heat and photons (light). So option A is the first in the order. This will generate 1 bromocyclopentane through halogenation of the alkane. Secondly, a hot and strong base should be added like the NaOEt, EtOH to remove the added bromine and one atom of hydrogen from the resulting 1 bromocyclopentane in the previous reaction. This will yield cyclopentene, thus making the compound more electrophilic. So option g is required. Thirdly, bromine molecules will be added (C) to take up their places at the two electrophilic regions of the compound to produce Trans-1, 2dibromocyclopentane.
Answer : The mass of copper deposit is, 1.98 grams
Explanation :
First we have to calculate the charge.
Formula used : 
where,
Q = charge = ?
I = current = 10 A
t = time = 10 min = 600 sec (1 min = 60 sec)
Now put all the given values in this formula, we get

Now we have to calculate the number of atoms deposited.
As, 1 atom require charge to deposited =
Number of atoms deposited =
atoms
Now we have to calculate the number of moles deposited.
Number of moles deposited =
moles
Now we have to calculate the mass of copper deposited.
1 mole of Copper has mass = 63.5 g
Mass of Copper Deposited = 
Therefore, the mass of copper deposit is, 1.98 grams