Moles = (6.74*10^23)/(6.02*10^23) =1.119 moles
1.119*44.09=49.36g
Height of wave - amplitude
Higher the pitch - higher the frequency
Louder - higher the amplitude
bottom of the wave - trough
distance from crest to crest - wave length
top of the wave - crest
Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O
Kinetic energy remains conserved in an elastic collision.
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>