Answer:
The osmotic pressure of cell is
KPa
Explanation:
As we know the osmotic pressure is equal to

Where
i is the Van Hoff factor
c is the concentration of solution
R is the ideal gas constant
and T is the temperature.
Substituting the given values, we get -

KPa
1 is the number of unpaired electrons in the outer subshell of a Cl atom
Answer: -
The experiment Niven is doing is burning of Mg.
The first step would be finding the molar mass of MgO
Atomic mass of Mg = 24 g
Atomic mass of Oxygen = 16 g
Molar mass of MgO = 24 x 1 + 16 x 1 = 40 g
The balanced chemical equation for this reaction is
2 Mg + O2 -- > 2MgO
From the balanced equation we see that
2 Mg gives 2 MgO
2 x24 g of Mg O gives 2 x 40 g of MgO.
28g of MgO gives

= 46.66 g of MgO.
Answer:
Option C. 13.5 atm
Explanation:
From the question given above, the following data were obtained:
Pressure of Neon (Pₙₑ) = 4.1 atm
Pressure of Argon (Pₐᵣ) = 3.2 atm
Pressure of nitrogen (Pₙ₂) = 6.2 atm
Total pressure (Pₜ) =?
The total pressure in the container can be obtained by adding the pressure of the individual gases. This is illustrated below:
Pₜ = Pₙₑ + Pₐᵣ + Pₙ₂
Pₜ = 4.1 + 3.2 + 6.2
Pₜ = 13.5 atm
Therefore, the total pressure in the container is 13.5 atm
Answer:
150.1 mL
Explanation:
Step 1: Given data
- Density of benzene (ρ): 0.879 g/mL
- Mass of the sample of benzene (m): 131.9 g
- Volume of the sample of benzene (V): ?
Step 2: Calculate the volume of the sample of benzene
Density is an intrinsic property. It is equal to the quotient between the mass and the volume of the sample of benzene.
ρ = m/V
V = m/ρ
V = 131.9 g/(0.879 g/mL)
V = 150.1 mL