The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Answer:
Butanoic acid and 2-propanol reacts to form isopropyl butyrate.
Explanation:
brainliest plz
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:

where n = number density

Substituting for P, k and T in equation (2) gives:

Next, substituting for n and σ in equation (1) gives:

.150 = 3
20.20 = 4
25.00 = 4
If a 0 does not have a number or a period after it, it is not significant.
If the 0 is behind the decimal point, it is always significant.
Explanation:
The given data is as follows.
Refractive index of mixture = 1.456
Refractive index of hexane = 1.375
Refractive index of toulene = 1.497
Let mole fraction of hexane =
and, mole fraction of toulene =
Also, 
or, 
Hence, calculate the mole fraction of hexane as follows.
refractive index mixture= mole fraction hexane × ref index hexane + mole fraction toluene × ref index toluene.
1.456 = 
1.456 = 
0.081 = 
= 
= 0.66
Since, 
= 1 - 0.66
= 0.34
Thus, we can conclude that mole fraction of hexane in your sample is 0.34.