Answer:
import pandas pd
def read_prices(tickers):
price_dict = {}
# Read ingthe ticker data for all the tickers
for ticker in tickers:
# Read data for one ticker using pandas.read_csv
# We assume no column names in csv file
ticker_data = pd.read_csv("./" + ticker + ".csv", names=['date', 'price', 'volume'])
# ticker_data is now a panda data frame
# Creating dictionary
# for the ticker
price_dict[ticker] = {}
for i in range(len(ticker_data)):
# Use pandas.iloc to access data
date = ticker_data.iloc[i]['date']
price = ticker_data.iloc[i]['price']
price_dict[ticker][date] = price
return price_dict
The workers went to bed hungry probably because they are hard workers and so didn’t want to eat because they didn’t want to take break┌(; ̄◇ ̄)┘
Technician a is correct because he says that Many common rail injectors filters can be bypassed by dirt, which can lead to an injector sticking open and continuously fueling a cylinder.
Coalescence is used to separate the water and fuel. To the fuel injector cleaning kit, fasten your air compressor. Diesel engines run at compression ratios that are greater than those of gasoline engines. greater ratio compared to gasoline engines. increased thermal expansion as a result. more fuel energy that is transformed into usable power. The great benefit of using a dry cylinder sleeve is that by quickly installing new sleeves, the cylinder block can be quickly restored to its original specifications. Vacuum drying can be used to get rid of small amounts of water. A nozzle is used to spray the fuel into the vacuum chamber of engines. Air and unsolved free water are taken out of the oil. The fuel is evenly dispersed, which facilitates efficient drying.
Learn more about injectors here:
brainly.com/question/27969202
#SPJ4
Answer:
the rate of increase of radius is dR/dt = 0.804 m/hour = 80.4 cm/hour
Explanation:
the slick of oil can be modelled as a cylinder of radius R and thickness h, therefore the volume V is
V = πR² * h
thus
h = V / (πR²)
Considering that the volume of the slick remains constant, the rate of change of radius will be
dh/dt = V d[1/(πR²)]/dt
dh/dt = (V/π) (-2)/R³ *dR/dt
therefore
dR/dt = (-dh/dt)* (R³/2) * (π/V)
where dR/dt = rate of increase of the radius , (-dh/dt)= rate of decrease of thickness
when the radius is R=8 m , dR/dt is
dR/dt = (-dh/dt)* (R³/2) * (π/V) = 0.1 cm/hour *(8m)³/2 * π/1m³ *(1m/100 cm)= 0.804 m/hour = 80.4 cm/hour
Answer:
risk = probability x loss
Explanation: