1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rusak2 [61]
3 years ago
9

15 POINTS! Help.

Engineering
2 answers:
asambeis [7]3 years ago
7 0

Answer:

It is going to overload

Explanation:

<em>Hope this helps have a great day!</em>

IRISSAK [1]3 years ago
4 0

Answer: it would  overload

Explanation:

You might be interested in
The inspector should inspect insulation in unfinished spaces, including attics, _____ and foundation areas.
RoseWind [281]

Answer:

basements

Explanation:

6 0
2 years ago
Carnot heat engine A operates between 20ºC and 520ºC. Carnot heat engine B operates between 20ºC and 820ºC. Which Carnot heat en
nikklg [1K]

Answer:

engine B is more efficient.

Explanation:

We know that Carnot cycle is an ideal cycle for all working heat engine.In Carnot cycle there are four processes in which two are constant temperature processes and others two are isentropic process.

We also kn ow that the efficiency of Carnot cycle given as follows  

\eta =1-\dfrac{T_1}{T_2}

Here temperature should be in Kelvin.

For engine A

\eta =1-\dfrac{T_1}{T_2}

\eta =1-\dfrac{273+20}{520+273}

\eta =0.63

For engine B

\eta =1-\dfrac{T_1}{T_2}

\eta =1-\dfrac{273+20}{820+273}

\eta =0.73

So from above we can say that engine B is more efficient.

4 0
4 years ago
Vector A extends from the origin to a point having polar coordinates (7, 70ᵒ ) and vector B extends from the origin to a point h
yaroslaw [1]

Answer:

13.95

Explanation:

Given :

Vector A polar coordinates = ( 7, 70° )

Vector B polar coordinates = ( 4, 130° )

To find A . B we  will

A ( r , ∅ ) = ( 7, 70 )

A = rcos∅ + rsin∅

therefore ; A  = 2.394i + 6.57j

B ( r , ∅ ) = ( 4, 130° )

B = rcos∅ + rsin∅

therefore ;  B = -2.57i + 3.06j

Hence ; A .B

( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95

8 0
3 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
3 years ago
Describe three differences between liquids and gases in fluid power systems.<br> Help !!!
scoundrel [369]
Gases, liquids and solids are all made up of atoms, molecules, and/or ions, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
3 0
3 years ago
Other questions:
  • 5. Assume that you and your best friend ench have $1000 to invest. You invest your money
    8·1 answer
  • What will the following segment of code output? score = 95; if (score &gt; 95) cout &lt;&lt; "Congratulations!\n"; cout &lt;&lt;
    9·1 answer
  • (Practice work, not graded)
    11·1 answer
  • What are the equipment requirements for windshields and side windows?
    13·1 answer
  • Thermodynamics deals with the macroscopic properties of materials. Scientists can make quantitative predictions about these macr
    13·1 answer
  • Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Y
    11·1 answer
  • A small distiller evaporates 10 L of water per half hour. Alloy tubing exposed to the air serves a condenser to recover steam. T
    14·1 answer
  • You can safely place a jack on a floor pan to keep a vehicle steady.
    5·2 answers
  • Engineers are problem blank<br> who use critical thinking to create new solutions.
    11·2 answers
  • Whats the purpose of the keyway
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!