1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
14

I really need help i will give brainly plz no funny answers

Engineering
1 answer:
vfiekz [6]3 years ago
8 0

Answer:

3960J

Explanation:

You might be interested in
How has drafting evolved in the 21st century
Mila [183]

Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.

<u>Explanation</u>

•  1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.

•   1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.

•   Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.

8 0
3 years ago
Ammonia enters the expansion valve of a refrigeration system at a pressure of 1.4 MPa and a temperature of 32degreeC and exits a
AveGali [126]

Answer:

the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %

Explanation:

given data

pressure p1 = 1.4 MPa = 14 bar

temperature t1 = 32°C

exit pressure = 0.08 MPa = 0.8 bar

to find out

the quality of the refrigerant exiting the expansion valve

solution

we know here refrigerant undergoes at throtting process so

h1 = h2

so by table A 14 at p1 = 14 bar

t1 ≤ Tsat

so we use equation here that is

h1 = hf(t1) = 332.17 kJ/kg

this value we get from table A13

so as h1 = h2

h1 = h(f2)  + x(2) * h(fg2)

so

exit quality  = \frac{h1 - h(f2)}{h(fg2)}

exit quality  = \frac{332.17- 9.04}{1382.73)}

so exit quality = 0.2337 = 23.37 %

the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %

5 0
3 years ago
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa. Using the distortion-energy a
Ratling [72]

Answer:

Explanation:

From  the given question:

Using the distortion energy theory to determine the  factors of safety  FOS can be expressed  by the relation:

\dfrac{Syt}{FOS}= \sqrt{ \sigma x^2+\sigma  y^2-\sigma x \sigma y+3 \tau_{xy^2}}

where; syt = strength in tension and compression = 350 MPa

The maximum shear stress theory  can be expressed as:

\tau_{max} = \dfrac{Syt}{2FOS}

where;

\tau_{max} =\sqrt{ (\dfrac{\sigma x-\sigma  y}{2})^2+ \tau _{xy^2

a. Using distortion - energy theory formula:

\dfrac{350}{FOS}= \sqrt{94^2+0^2-94*0+3 (-75)^2}}

\dfrac{350}{FOS}=160.35

{FOS}=\dfrac{350}{160.35}

FOS = 2.183

USing the maximum-shear stress theory;

\dfrac{350}{2 FOS}  =\sqrt{ (\dfrac{94-0}{2})^2+ (-75)^2

\dfrac{350}{2 FOS}  =88.51

\dfrac{350}{ FOS}  =2 \times 88.51

{ FOS}  =\dfrac{350}{2 \times 88.51}

FOS = 1.977

b. σx = 110 MPa, σy = 100 MPa

Using distortion - energy theory formula:

\dfrac{350}{FOS}= \sqrt{ 110^2+100^2-110*100+3(0)^2}

\dfrac{350}{FOS}= \sqrt{ 12100+10000-11000

\dfrac{350}{FOS}=105.3565

FOS=\dfrac{350}{105.3565}

FOS =3.322

USing the maximum-shear stress theory;

\dfrac{350}{2 FOS}  =\sqrt{ (\dfrac{110-100}{2})^2+ (0)^2

\dfrac{350}{2 FOS}  ={ (\dfrac{110-100}{2})^2

\dfrac{350}{2 FOS}  =25

FOS = 350/2×25

FOS = 350/50

FOS = 70

c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa

Using distortion- energy theory formula:

\dfrac{350}{FOS}= \sqrt{ 90^2+20^2-90*20+3(-20)^2}

\dfrac{350}{FOS}= \sqrt{ 8100+400-1800+1200}

\dfrac{350}{FOS}= 88.88

FOS = 350/88.88

FOS = 3.939

USing the maximum-shear stress theory;

\dfrac{350}{2 FOS}  =\sqrt{ (\dfrac{90-20}{2})^2+ (-20)^2

\dfrac{350}{2 FOS}  =\sqrt{ (35)^2+ (-20)^2

\dfrac{350}{2 FOS}  =\sqrt{ 1225+ 400

\dfrac{350}{2 FOS}  =40.31

FOS}  =\dfrac{350}{2*40.31}

FOS = 4.341

7 0
3 years ago
What do we need to do to get CO2 emissions all the way to zero?
Svetlanka [38]

Answer:

A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels

Explanation:

here is your answer if you like my answer please follow

3 0
2 years ago
What are the chemical properties of metals
Grace [21]

Answer:

  • The density of metals are usually high
  • They are great conductors of heat
  • They are malleable and ductile

8 0
3 years ago
Other questions:
  • The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C. Determine the gage pressure of the gas if
    12·1 answer
  • Please help <br>.. <br>....<br> . .<br>....<br>...​
    13·1 answer
  • A simple Rankine cycle coal-fired power plant has given states identified in the following table. The power plant produces 2.1 b
    9·1 answer
  • A Gaussian random voltage X volts is input to a half-wave rectifier and the output voltage is Y = Xu (X) Volts were u (x) is the
    9·1 answer
  • Which of the followong parts does not rotate during starter operation? A. Commutator segments B. Armature windings c. Field wind
    10·1 answer
  • Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of hea
    6·1 answer
  • What is meant by the acronym ISO
    15·1 answer
  • Technician A states that a scan tool can read
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B7x%7D%20%5C%2C%20dx" id="TexFormula1" title="\int\limits^a_b {7x} \
    8·1 answer
  • Additional scals apply to the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!