Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:
Numbers 4, 6, & 7 are correct
Explanation:
4- this allows the op amp to have zero voltage so that maximum voltage is transferred to output load.
6- this ensures that op amp doesn't cause loading in the original circuit, high input impedance would not deter the circuit from pulling current from it.
7- high difference between upper and lower frequencies.
Answer:
(i) 169.68 volt
(ii) 16.90 volt
(iii) 16.90 volt
(iv) 108.07 volt
(v) 2.161 A
Explanation:
Turn ratio is given as 10:1
We have given that input voltage 
(i) We know that peak voltage is give by 
(ii) We know that for transformer 
So 

So peak voltage in secondary will be 16.90 volt
(iii) Peak voltage of the rectifier will be equal to the peak voltage of the secondary
So peak voltage of the rectifier will be 16.90 volt
(iv) Dc voltage of the rectifier is given by 
(v) Now dc current is given by 
Answer:
a ship is a large vessel intended for oceangoing or at least deep-water transport, and a boat is anything else." Basically, a ship can carry a boat, but a boat cannot carry a ship
Answer:
The radius of curvature is 979 meter
Explanation:
We have given velocity of the canon ball v = 98 m/sec
Acceleration due to gravity 
We know that at highest point of trajectory angular acceleration is equal to acceleration due to gravity
Acceleration due to gravity is given by
, here v is velocity and r is radius of curvature
So 
r = 979 meter
So the radius of curvature is 979 meter