The question is incomplete! The complete question along with Matlab code and explanation is provided below.
Question
Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subplots should include a title which is the equation displayed. The independent variable (angle) should vary from 0 to 360 degrees and the plots should use a solid red line.
1. cos(u - 45)
2. 3cos(2u) - 2
3. sin(3u)
4. -2cos(u)
Matlab Code with Explanation:
u=[0:0.01:2*pi] % independent variable represents 0 to 360 degrees in steps of 0.01
y1=cos(2*pi*u-45); % function 1
y2=3*cos(2*pi*2*u)-2; % function 2
y3=sin(2*pi*3*u); % function 3
y4=-2*cos(2*pi*u); % function 4
subplot(4,1,1) % 4 rows, 1 column and at position 1
plot(u,y1,'r'); % this function plots y w.r.t u and 'r' is for red color
grid on % turns on grids
xlabel('u') % label of x-axis
ylabel('y1') % label of x-axis
title('y1=cos(2*pi*u-45)') % title of the plot
ylim([-3 3]) % limits of y-axis
xlim([0 2*pi]) % limits of x-axis
% repeat the same procedure for the remaining 3 functions
subplot(4,1,2)
plot(u,y2,'r');
grid on
xlabel('u')
ylabel('y2')
title('y2=3*cos(2*pi*2*u)-2')
ylim([-6 3])
xlim([0 2*pi])
subplot(4,1,3)
plot(u,y3,'r');
grid on
xlabel('u')
ylabel('y3')
title('y3=sin(2*pi*3*u)')
ylim([-3 3])
xlim([0 2*pi])
subplot(4,1,4)
plot(u,y4,'r');
grid on
xlabel('u')
ylabel('y4')
title('y4=-2*cos(2*pi*u)')
ylim([-3 3])
xlim([0 2*pi])
Output Results:
The first plot shows a cosine wave with a phase shift of 45°
The second plot shows that the amplitude of the cosine wave is increased and the wave is shifted below zero level into the negative y-axis because of -2 also there is a increase in frequency since it is multiplied by 2.
The third plot shows that the frequency of the sine wave is increased since it is multiplied by 3.
The fourth plot shows a cosine wave which is multiplied by -2 and starts from the negative y-axis.