1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
11

(X+y)^16 what is the answer

Mathematics
1 answer:
horsena [70]3 years ago
4 0

Use the Binomial Theorem to expand.

You might be interested in
What is the anwser to the math problem​
Mariulka [41]

Answer:

whats the problem

Step-by-step explanation:

4 0
4 years ago
Item 3 Find the distance from point $A$ to $\overleftrightarrow{XZ}$ . Round your answer to the nearest tenth. Triangle X Z A an
vovikov84 [41]

Answer:

3.2

Step-by-step explanation:

Given the coordinates

X(4, -3)

Y(2, 1.5)

A(3, 3)

Z(4,-1)

We are to find the distance from point A to XZ

First let us get the coordinate XZ

According to vector notation XZ = Z-X

XZ = (4,-1)-(4,-3)

XZ = [(4-4),-1-(-3)]

XZ = (0, 2)

Next is to find the distance from A(3, 3) to XZ(0,2) using the formula for calculating the distance between two points.

D = √(x2-x1)²+(y2-y1)²

x1 = 3, y1 = 3, x2 = 0, y2 = 2

D = √(0-3)²+(2-3)²

D = √9+1

D = √10

D = 3.16

Hence the distance from point A to XZ to nearest tenth is 3.2

4 0
3 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
The angle θ lies in Quadrant II .
Andreyy89

let's keep in mind that, in the II Quadrant, cosine is negative and sine, is positive.

cosine is adjacent/hypotenuse, however the hypotenuse is simply a radius unit, and thus is never negative, so in the -(2/3) the negative must be the numerator, -2.


\bf cos(\theta )=\cfrac{\stackrel{adjacent}{-2}}{\stackrel{hypotenuse}{3}}\impliedby \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{3^2-(-2)^2}=b\implies \pm\sqrt{5}=b\implies \stackrel{\textit{II Quadrant}}{+\sqrt{5}=b}~\hfill tan(\theta )=\cfrac{\stackrel{opposite}{\sqrt{5}}}{\stackrel{adjacent}{-2}} \\\\\\ ~\hspace{34em}

6 0
4 years ago
Suppose the owner of a local apple orchard has 4 half-bushels of apples to sell. He loads them on his truck, and drives his rout
NikAS [45]

Answer:

a) The orchard owner's expected profit from driving the route is $33.

b) The standard deviation of the profit is $27.28

Step-by-step explanation:

a) Data and Calculations:

Apples to sell = 4 half-bushels

Price of each half-bushel sold = $40

Sales revenue = $160 ($40 *4)

Cost of driving the route = $15

Expected values:

Event                          Probability  Revenue       Profit         Expected  Profit

No Sales                        40%            $0         ($15) ($0 - $15)        ($6.00)

Selling 1 half-bushel      30%         $40         $25 ($40 - $15)         $7.50

Selling 2 half-bushels   10%          $80         $65 ($80 - $15)        $6.50

Selling 3 half-bushels   10%         $120       $105 ($120 - $15)     $10.50

Selling 4 half-bushels   10%         $160       $145 ($160 - $15)     $14.50

Total expected profit = $33

Event                          Expected  Profit  Mean        Squared

                                                                       Difference

No Sales                            ($6.00)        -39             1,521

Selling 1 half-bushel           $7.50         -25.5           650.25

Selling 2 half-bushels        $6.50         -26.5           702.25

Selling 3 half-bushels      $10.50         -22.50         506.25

Selling 4 half-bushels      $14.50         -18.50          342.25

Sum of squared differences                                     3,722

Mean of squared differences = 744.4 (3,722/5)

Standard deviation = square root of the mean

= 27.28

= $27.28

3 0
3 years ago
Other questions:
  • Is 37.5 a rational or an inrational
    10·2 answers
  • State a point ...please help me
    10·1 answer
  • The sum of 3 consecutive even numbers is 270. What is the first number in this sequence?
    13·2 answers
  • Which is true about the domains and ranges of the functions f(x) = 1/8sqrt(x) and g(x) = 8sqrt(x)?
    13·2 answers
  • B/-3+4 is less than 13
    14·2 answers
  • sally had earned 350 points so far this year in math class. after the most recent assignment, Sally now has 840 points. what was
    12·1 answer
  • In parallelogram CNWK, ZC and ZK are consecutive interior angles. The
    11·1 answer
  • Please answer I need it
    8·2 answers
  • 7. The planet Abydos experiences drastic changes in temperature over the course of the day. On one day it reached a minimum temp
    7·1 answer
  • Consider the diagram below.<br> Find the value of x<br> Enter each line of work as an equation.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!