Answer:
10cm/s²
Step-by-step explanation:
Acceleration is the change in velocity of an object with respect to time.
Given velocity v(x) to be x³-2x+6
Acceleration = ∆v/∆x
Differentiating the velocity function to get acceleration we have,
Acceleration = dv/dt = 3x²-2
Acceleration of the particle at x = 2 will give;
dv/dt @ x = 2 is 3(2)²-2
= 12-2 = 10cm/s²
The answer to this question is -5
Answer:
All of them are rational except for 0.0100100010001, root50, and pi
rational = no forever decimal these are the ones that arent rational
Hope this helps plz hit the crown :D
Answer:
Correct option: (a) 0.1452
Step-by-step explanation:
The new test designed for detecting TB is being analysed.
Denote the events as follows:
<em>D</em> = a person has the disease
<em>X</em> = the test is positive.
The information provided is:

Compute the probability that a person does not have the disease as follows:

The probability of a person not having the disease is 0.12.
Compute the probability that a randomly selected person is tested negative but does have the disease as follows:
![P(X^{c}\cap D)=P(X^{c}|D)P(D)\\=[1-P(X|D)]\times P(D)\\=[1-0.97]\times 0.88\\=0.03\times 0.88\\=0.0264](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%29%3DP%28X%5E%7Bc%7D%7CD%29P%28D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%20P%28D%29%5C%5C%3D%5B1-0.97%5D%5Ctimes%200.88%5C%5C%3D0.03%5Ctimes%200.88%5C%5C%3D0.0264)
Compute the probability that a randomly selected person is tested negative but does not have the disease as follows:
![P(X^{c}\cap D^{c})=P(X^{c}|D^{c})P(D^{c})\\=[1-P(X|D)]\times{1- P(D)]\\=0.99\times 0.12\\=0.1188](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%5E%7Bc%7D%29%3DP%28X%5E%7Bc%7D%7CD%5E%7Bc%7D%29P%28D%5E%7Bc%7D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%7B1-%20P%28D%29%5D%5C%5C%3D0.99%5Ctimes%200.12%5C%5C%3D0.1188)
Compute the probability that a randomly selected person is tested negative as follows:


Thus, the probability of the test indicating that the person does not have the disease is 0.1452.