1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
10

Need actual help (please hurry)

Mathematics
1 answer:
mixer [17]3 years ago
3 0
A. n=5
20=4n
29/4=n
5=n
You might be interested in
What is 31/87 as a percentage?<br> Give your answer rounded to one decimal place.
kicyunya [14]

Answer:

35.6%

Step-by-step explanation:

31/87(100)

3100/87

35.6%

8 0
3 years ago
Read 2 more answers
Solve: (-6)(-7)<br> Divide or multiple
Paul [167]

Answer: 42

Step-by-step explanation:

If they are in parentheses, you are going to multiply them, and when you multiply two negatives, you make a positive. which gives you 42.

6 0
3 years ago
Read 2 more answers
Suppose θ is an angle in the standard position whose terminal side is in Quadrant IV and cot θ= -6/7 . Find the exact values of
Llana [10]

Answer:

Part 1) csc(\theta)=-\frac{\sqrt{85}}{7}

Part 2) sin(\theta)=-\frac{7}{\sqrt{85}}  or sin(\theta)=-\frac{7\sqrt{85}}{85}

Part 3) tan(\theta)=-\frac{7}{6}

Part 4) cos(\theta)=\frac{6}{\sqrt{85}} or cos(\theta)=\frac{6\sqrt{85}}{85}

Part 5) sec(\theta)=\frac{\sqrt{85}}{6}

Step-by-step explanation:

we know that

The angle theta lie on the IV Quadrant

so

sin(θ) is negative

cos(θ) is positive

tan(θ) is negative

sec(θ) is positive

csc(θ) is negative

step 1

Find the value of csc(θ)

we know that

1+cot^{2}(\theta)=csc^{2}(\theta)

we have

cot(\theta)=-\frac{6}{7}

substitute

1+(-\frac{6}{7})^{2}=csc^{2}(\theta)

1+\frac{36}{49}=csc^{2}(\theta)

\frac{85}{49}=csc^{2}(\theta)rewrite

csc(\theta)=-\frac{\sqrt{85}}{7} ----> remember that is negative

step 2

Find the value of sin(θ)

we know that

csc(\theta)=\frac{1}{sin(\theta)}

we have

csc(\theta)=-\frac{\sqrt{85}}{7}

therefore

sin(\theta)=-\frac{7}{\sqrt{85}}

or

sin(\theta)=-\frac{7\sqrt{85}}{85}

step 3

Find the value of  tan(θ)

we know that

tan(\theta)=\frac{1}{cot(\theta)}

we have

cot(\theta)=-\frac{6}{7}

therefore

tan(\theta)=-\frac{7}{6}

step 4

Find the value of cos(θ)

we know that

sin^{2}(\theta)+cos^{2}(\theta)=1

we have

sin(\theta)=-\frac{7}{\sqrt{85}}

substitute

(-\frac{7}{\sqrt{85}})^{2}+cos^{2}(\theta)=1

\frac{49}{85}+cos^{2}(\theta)=1

cos^{2}(\theta)=1-\frac{49}{85}

cos^{2}(\theta)=\frac{36}{85}

cos(\theta)=\frac{6}{\sqrt{85}} ------> the cosine is positive

or

cos(\theta)=\frac{6\sqrt{85}}{85}

step 5

Find the value of sec(θ)

we know that

sec(\theta)=\frac{1}{cos(\theta)}

we have

cos(\theta)=\frac{6}{\sqrt{85}}

therefore

sec(\theta)=\frac{\sqrt{85}}{6} ----> is positive

8 0
4 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Identify the factors of the function <br> y = 3x2 - 7x – 10
NikAS [45]

Answer:

(x + 1)(3x - 10)

Step-by-step explanation:

Given

3x² - 7x - 10

Consider the factors of the product of the x² term and the constant which sum to give the coefficient of the x- term.

product = 3 × - 10 = - 30 and sum = - 7

The factors are + 3 and - 10

Use these factors to split the x- term

3x² + 3x - 10x - 10 ( factor the first/second and third/fourth terms )

3x(x + 1) - 10(x + 1) ← factor out (x + 1) from each term

(x + 1)(3x - 10), thus

y = (x + 1)(3x - 10) ← in factored form

8 0
3 years ago
Other questions:
  • If the central angle θ of a circle that subtends an intercepted arc is measured in degrees, then the constant of proportionality
    14·2 answers
  • Landon owns a hybrid SUV that can travel 400 miles on a 15 gallon tank of gas determine how many miles you can travel on 6 gallo
    13·1 answer
  • Which equation represents the graphed function ?
    8·2 answers
  • Each team in Lorenzo's soccer league has 18 players. There are 14 teams in the soccer league. what is the total number of player
    7·1 answer
  • Sd98cdcsddddddddddddddddddddiiiiiiiiiiiiiiiiii
    9·1 answer
  • Please I need help!!!!!!
    13·1 answer
  • Olivia has 48 slices of ham and 36 slices of cheese to make sandwiches.
    13·1 answer
  • Select all that apply<br>System a<br> system b<br> system c<br> system d<br> system e.​
    6·2 answers
  • Question: The mean birth weight of male babies born to 121 mothers taking a vitamin supplement is 3.67 kilograms (based on New Y
    15·1 answer
  • Help please, ill give 5 stars, and brainly ofc (if correct)
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!