Answer:
The electrical force of attraction between the balloons is
.
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between the charges, d = 0.65 m
We need to find the electrical force of attraction between two balloons. It is given by the formula as :

So, the electrical force of attraction between the balloons is
. Hence, this is the required solution.
Answer:
a. F = 2.32*10^-18 N
b. The force F is 2.59*10^11 times the weight of the electron
Explanation:
a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:
(1)
v: final speed of the electron = 6.60*10^5 m/s
vo: initial speed of the electron = 4.00*10^5 m/s
a: acceleration of the electron = ?
x: distance traveled by the electron = 5.40cm = 0.054m
you solve the equation (2) for a and replace the values of the parameters:

Next, you use the second Newton law to calculate the force:

m: mass of the electron = 9.11*10^-31kg

The magnitude of the force exerted on the electron is 2.32*10^-18 N
b. The weight of the electron is given by:

The quotient between the weight of the electron and the force F is:

The force F is 2.59*10^11 times the weight of the electron
Hey there! <span>The cohesive forces between liquid molecules are responsible for the phenomenon known as </span>surface tension<span>. The molecules at the </span>surface do<span> not have other like molecules on all sides of them and consequently they cohere more strongly to those directly associated with them on the </span>surface<span>. Hope this helps! :)</span>
Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.