1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
4 years ago
14

2. Suppose that a parallel-plate capacitor has circular plates with radius R = 30 mm and a plate separation of d = 5.0 mm. Suppo

se also that a sinusoidal potential difference with a maximum value and a frequency of =60 Hz is applied across the plates. Find , the maximum value of the induced magnetic field that occurs at r = R. Express your answers in terms of variables first and then plug in numbers afterword.
Physics
1 answer:
seropon [69]4 years ago
7 0

Answer:

The maximum value of the induced magnetic field is 2.901\times10^{-13}\ T.

Explanation:

Given that,

Radius of plate = 30 mm

Separation = 5.0 mm

Frequency = 60 Hz

Suppose the maximum potential difference is 100 V and r= 130 mm.

We need to calculate the angular frequency

Using formula of angular frequency

\omega=2\pi f

Put the value into the formula

\omega=2\times\pi\times60

\omega=376.9\ rad/s

When r>R, the magnetic field is inversely proportional to the r.

We need to calculate the maximum value of the induced magnetic field that occurs at r = R

Using formula of magnetic filed

B_{max}=\dfrac{\mu_{0}\epsilon_{0}R^2\timesV_{max}\times\omega}{2rd}

Where, R = radius of plate

d = plate separation

V = voltage

Put the value into the formula

B_{max}=\dfrac{4\pi\times10^{-7}\times8.85\times10^{-12}\times(30\times10^{-3})^2\times100\times376.9}{2\times130\times10^{-3}\times5.0\times10^{-3}}

B_{max}=2.901\times10^{-13}\ T

Hence, The maximum value of the induced magnetic field is 2.901\times10^{-13}\ T.

You might be interested in
What do you mean by kinetic energy and potential energy ?
Verizon [17]

  • Kinetic Energy of an object is the measure of the work an object can do by virtue of its motions..

  • Formula - KE = 1/2 mv^2

  • Where KE is the kinetic energy, m is the body’s mass, and v is the body’s velocity.

  • Potential energy is the stored energy in any object or system by virtue of its position or arrangement of parts..

  • Formula - W = mgh

Where,

. m is the mass in kilograms

. g is the acceleration due to gravity

. h is the height in meters

Hope it helpz~ uh..

4 0
2 years ago
The kinetic energy of an object can sometimes be greater than a potential energy a originally possessed, true or false?
Mamont248 [21]

Answer:

true

Explanation:

Energy stored in the nuclei of atoms can be used to generate electricity. ... Most of the energy of food is converted to heat.

4 0
3 years ago
Read 2 more answers
The wavelength of violet light is about 425 nm (1 nanometer = 1 × 10−9 m). what are the frequency and period of the light waves?
BigorU [14]

1. Frequency: 7.06\cdot 10^{14} Hz

The frequency of a light wave is given by:

f=\frac{c}{\lambda}

where

c=3\cdot 10^{-8} m/s is the speed of light

\lambda is the wavelength of the wave

In this problem, we have light with wavelength

\lambda=425 nm=425\cdot 10^{-9} m

Substituting into the equation, we find the frequency:

f=\frac{c}{\lambda}=\frac{3\cdot 10^{-8} m/s}{425\cdot 10^{-9} m}=7.06\cdot 10^{14} Hz


2. Period: 1.42 \cdot 10^{-15}s

The period of a wave is equal to the reciprocal of the frequency:

T=\frac{1}{f}

The frequency of this light wave is 7.06\cdot 10^{14} Hz (found in the previous exercise), so the period is:

T=\frac{1}{f}=\frac{1}{7.06\cdot 10^{14} Hz}=1.42\cdot 10^{-15} s


4 0
3 years ago
Read 2 more answers
(1 point) A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 new
Nonamiya [84]

Answer:

x(t)=0.337sin((5.929t)

Explanation:

A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.

Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation  

m \frac{d^{2}x}{dt^{2}} +kx=0

Definition of parameters  

m=mass 3kg

k=force constant

e=extension ,m

ω =angular frequency

k=90/1.6=56.25N/m

ω^2=k/m= 56.25/1.6

ω^2=35.15625

ω=5.929

General solution will be

x(t)=c1cos(ωt)+c2Sin(ωt)

x(t)=c1cos(5.929t)+c2Sin(5.929t)

differentiating x(t)

dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)

when x(0)=0, gives c1=0

dx(t0)=2m/s gives c2=0.337

Therefore, the position of the mass after t seconds is  

x(t)=0.337sin((5.929t)

6 0
3 years ago
PLEASE HELP WITH THIS!
jok3333 [9.3K]

Answer: A

Explanation:

Parallel circuit. The source current is three times the current of a single bulb

7 0
3 years ago
Other questions:
  • The graph represents velocity vs. time for Carla.
    10·2 answers
  • According to a rule-of-thumb. every five seconds between a lightning flash and the following thunder gives the distance to the f
    10·1 answer
  • In the past, how did people use the systematic movement of celestial bodies? Select all that apply.
    7·2 answers
  • A laser beam is incident on two slits with a separation of 0.200 mm, and a screen is placed 5.00 m from the slits. If the bright
    11·1 answer
  • What is determined by both mass and velocity
    8·2 answers
  • What measures wind speed?
    7·2 answers
  • How do the elements in the Noble Gas family compare?
    12·2 answers
  • What is the source of the material that now makes up the sun and the rest of the solar system?
    10·1 answer
  • What is a substance?
    8·1 answer
  • What is the resistance of a resistor if the potential difference across the resistor is 4.0 V when a current of 10.0 A flows thr
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!