Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Person standing on A will hear the loudest sound
Explanation:
The intensity of a sound wave (which is proportional to the loudness of the sound) follows an inverse square law, which is:

where
I is the intensity of the wave
r is the distance from the source of the sound
This equation means that the intensity of the sound wave (and therefore, its loudness) is inversely proportional to the square of the distance from the source: therefore,
- As we get closer to the source of sound, the loudness increases
- As we move away from the source of sound, the loudness decreases
Therefore, the person that will hear the loudest sound is the one standing closer to the source, and therefore person A.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
weight is vector vary from place to place
Answer:
The temperature of the metal is 
Explanation:
From the question we are told that
The mass of the metal is 
The specific heat of the metal is 
The mass of the oil is 
The temperature of the oil is 
The specific heat of oil is 
The equilibrium temperature is 
According to the law of energy conservation
Heat lost by metal = heat gained by the oil
So
The quantity of heat lost by the metal is mathematically represented as

=> 
Where
the temperature of metal before immersion
The negative sign show heat lost
The quantity of gained t by the metal is mathematically represented as

=> 
So

substituting values

=> 
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).