In chemistry, the molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample, measured in moles.
The monochloroderivatives will be obtained by substituting chemically non equivalent hydrogen with chlorine atom, one by one
So the possible monochloro derivatives of 2,4-dimethylpentane (figure 1) are shown in figure (2)
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Guy-Lussac's Law states that the volume and the temperature are directly proportional given that the pressure remains constant.
For this problem, we will assume constant pressure. Based on the law:
(Volume/Temperatur)1 = (Volume/Temperature)2
(3.75/100) = (6.52/T)
T = 166.667 kelvin