Answer:
Part 1: - 1.091 x 10⁴ J/mol.
Part 2: - 1.137 x 10⁴ J/mol.
Explanation:
Part 1: At standard conditions:
At standard conditions Kp= 81.9.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(81.9)) = - 1.091 x 10⁴ J/mol.
Part 2: PICl = 2.63 atm; PI₂ = 0.324 atm; PCl₂ = 0.217 atm.
For the reaction:
I₂(g) + Cl₂(g) ⇌ 2ICl(g).
Kp = (PICl)²/(PI₂)(PCl₂) = (2.63 atm)²/(0.324 atm)(0.217 atm) = 98.38.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(98.38)) = - 1.137 x 10⁴ J/mol.
We know that the equation for density is:

where D is the density, m is the mass in grams, and V is the volume.
Given two of the variables, we can then solve for density:

So therefore, we now know that the density of carbon dioxide gas is 0.00196g/mL.
I say the answer is The ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1
Answer:
below :)
Explanation:
Bones, droppings, and other dead matter
Energy storage molecules, cellular respiration
Process, energy
Oxygen, energy storage molecules, energy, carbon dioxide
Cellular respiration, carbon
Carbon, nitrogen
Nitrogen
Decomposers, ecosystem
I think is 6.588579795x10^13 Kg because the equation is E=mc^2 and E is your Joules and c^2= 9x10^16 so m=(c^2)/E