Answer:
Pressure = 4.81atm
Explanation:
Pressure = ?
Temperature = 20°C = (20 + 273.15)K = 293.15K
Volume = 2.50L
R = 0.082J/mol.K
n = 0.5mol
From ideal gas equation,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles of the gas
R = ideal gas constant and may varies due to unit of pressure and volume
T = temperature of the ideal gas
PV = nRT
Solve for P,
P = nRT/ V
P = (0.5 * 0.082 * 293.15) / 2.50
P = 12.01915 / 2.50
P = 4.807atm
P = 4.81atm
The pressure of the ideal gas is 4.81atm
Answer:
If you double the mass of an object, you double the kinetic energy. If you double the speed of an object, the kinetic energy increases by four times. The word "kinetic" comes from the Greek word "kinesis" which means motion. Kinetic energy can be passed from one object to another in the form of a collision.
Explanation:
Answer:
Option A. FeCl3
Explanation:
The following data were obtained from the question:
Mass of iron (Fe) = 6.25g
Mass of the compound formed = 18g
From the question, we were told that the compound formed contains chlorine. Therefore the mass of chlorine is obtained as follow
Mass of chlorine (Cl) = Mass of compound formed – Mass of iron.
Mass of chlorine (Cl) = 18 – 6.25
Mass of chlorine (Cl) = 11.75g
The compound therefore contains:
Iron (Fe) = 6.25g
Chlorine (Cl) = 11.75g
The empirical formula for the compound can be obtained by doing the following:
Step 1:
Divide by their molar mass
Fe = 6.25/56 = 0.112
Cl = 11.75/35.5 = 0.331
Step 2:
Divide by the smallest
Fe = 0.112/0.112 = 1
Cl = 0.331/0.112 = 3
The empirical formula for the compound is FeCl3
Answer:
heat flows from the object that has more thermal more energy to the object with less thermal energy
The formation of nitric acid from nitrogen, hydrogen, and oxygen can be written as,
N₂ + H₂ + 3O₂ --> 2HNO₃
The net enthalpy of formation of nitric acid is calculated by,
Hrxn = Hproduct - Hreactant
Since all the reactants are in their elemental forms, the simplified equation would be,
Hrxn = Hproduct
Substituting,
Hrxn = (-186.81 kJ/mol)(2 mols)
<em>Answer: -372.42 kJ</em>