I think the answer is B. the sum of the enthalpy changes of the intermidiate reactions
Answer:
3.2×10^-3 mol
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
The question gives you the volume in mL, so to convert "mL" to "L" you need to divide by 1000. (6.70mL/ 1000L)= 0.0067L.
Now you can plug the numbers into the equation. 0.480M= n/ 0.0067L), multiply (0.480M×0.0067L)= 0.003216 mol. The scientific notation is 3.2×10^-3, 10^-3 because you move the decimal back three times and 3.2 because there are 2 sig figs.
Answer:
D. is the Answer. ✅
Explanation:
The Moon is 1/4 the size of Earth.
A is not right because Moon isn't a dwarf planet.❌
B is not right because the Moon isn't 1/2 the size of Earth.❌
C is not right because the Moon is no where near as large as Earth.❌
Hydrogen sulfide = hidrogen + sulfur
6.500 g
a) 0.384 g + x
=> 6.500 = 0.384 + x => x = 6.500 - 0.384 = 6.116 g
Answer: 6.116 g of sulfur must be obtained
b) this experiment demonstrate the conservation of mass.
c) Dalton's atomic model states that the atoms cannot be created, split or be destroyed, and so in a chemical reaction the atoms rearrange but the number of each type of atoms remain constant, so the mass of each type of atoms and the total mass remain constant.
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.