Answer:
y = 9.64 m
Explanation:
This exercise should be solved using kinematics in one dimension, let's write the equations for the two cases presented
The rock is released
y = y₀ + V₀₁ t₁ - ½ g t₁²
In this case the speed starts is zero
y = y₀ - ½ g t₁²
The rock is thrown up
y = y₀ + v₀² t₂ -½ g t₂²
The height that reaches the floor is zero
y₀ - ½ g t₁² = y₀ + v₀₂ t₂ - ½ g t₂²
We use the initial velocity with the equation
v₂² = v₀₂² - 2 g y
At the point of maximum height v₂ = 0
v₀₂ = √ (2 g
)
g (-t₁² + t₂²) = 2 √ (2 g
) t₂²
g (- 4.15² + 6.30²) = 2 √ (2 2 g) 6.3
g (22.4675) = 25.2 √ g
g² = 2²5.2 / 22.4675 g
g = 1.12 m / s²
Having the value of g we can use any equation to find the height
y = ½ g t₁²
y = ½ 1.12 4.15²
y = 9.64 m
Displacement only measure how far between the starting and ending point. In this case, Lisa walks around the block as a circle so the starting point is the same as the ending point. Thus, displacement is 0mile.
On the other hand, distance measures exactly how far she walks. In this case, the distance is 1 mile, same as the perimeter of the block.
I think the second choose, energy to be stored.
I believe its temperature because when something has high temperature it has more thermal energy and when something has low temperature, it has less thermal energy. Hope that helped ^-^