Answer:
Your answer would be C, Radio waves.
Explanation:
Answer:
Diameter of Newton’s 5th ring = 0.30 cm
Diameter of Newton’s 15th ring = 0.62 cm
Diameter of Newton’s 25th ring = ?
From Newton’s rings experiment we infer that
D2n+m − D2n = 4λmR
For the 5th and 15th rings we have
D215 − D25 = 4λ * 10 * R _______ (1) (m = 10)
For 15th and 25th rings
D225 − D215 = 4λ * 10 * R _______ (2) (m = 10)
We equate the two derivatives
Equation (2) = Equation (1)
D225 − D215 = D215 − D25
D225 = 2D215 – D25
Substituting the values into the equation
D225 = 2 * 0.62 * 0.62 – 0.3 * 0.3 =0.6788 cm2
D25 = 0.8239 cm
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>