Answer:
4.12 mol
Explanation:
Given data:
Moles of LiOH required = ?
Volume of solution = 4.2 L
Molarity of solution = 0.98 M
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
we will calculate the moles from above given formula.
0.98 M = number of moles / 4.2 L
0.98 M × 4.2 L = number of moles
Number of moles = 0.98 M × 4.2 L
Number of moles = 4.12 mol (M = mol/L)
You can wait until he either breaks up (if he does) or if just forget about him and go for another guy.
Answer:
Here you can use the Clausis Clayperon equation: ln P1/P2=-Ea/R-(1/T1 - 1/T2)
where P1 is the pressure at standard condition: 760 mm Hg
P2 is the variable we need to solve
Ea is the activation energy, which in this case is delta H vaporisation: 56.9 kJ/mol
R is the gas constant 8.314 J/mol or 8.314 J/mol /1000 to convert to kJ
T1 is the normal boiling point 356.7 C, but converted to Kelvin: 629.85K
T2 is room temperature 25 C, but converted to Kelvin: 298.15 K
Once you plug everything in, you should get 4.29*10^-3 mmHg
Explanation:
Answer:
80ml
Explanation:
you have your initial concentration to be 0.25 mole on your final volume to be 250 ml and your final concentration to be 0.8 0.08 molar you don't have your initial volume sotify your initial volume you use the expression see 1 * 21 equals see two times between you make when when the subject then 1 equals to 2 x 2/3 one you know substitute your values into it to get being one that's your original volume to be at the latest or 80 ml
Answer:(3)
Explanation: 2Al+3H2SO4----->Al(2SO4)3+3H2