1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
6

Find y' for the following. ​

Mathematics
1 answer:
Phoenix [80]3 years ago
4 0

Answer:

\displaystyle y' = \frac{\sqrt{y} + y}{4\sqrt{x}y \Big( y^\Big{\frac{3}{2}} + \sqrt{y} + 2y \Big) + \sqrt{x} + x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \frac{\sqrt{x} + 1}{\sqrt{y} + 1} = y^2

<u>Step 2: Differentiate</u>

  1. Implicit Differentiation:                                                                                 \displaystyle \frac{dy}{dx} \bigg[ \frac{\sqrt{x} + 1}{\sqrt{y} + 1} \bigg] = \frac{dy}{dx}[ y^2]
  2. Quotient Rule:                                                                                               \displaystyle \frac{(\sqrt{x} + 1)'(\sqrt{y} + 1) - (\sqrt{y} + 1)'(\sqrt{x} + 1)}{(\sqrt{y} + 1)^2} = \frac{dy}{dx}[ y^2]
  3. Rewrite:                                                                                                         \displaystyle \frac{(x^\Big{\frac{1}{2}} + 1)'(y^\Big{\frac{1}{2}} + 1) - (y^\Big{\frac{1}{2}} + 1)'(x^\Big{\frac{1}{2}} + 1)}{(y^\Big{\frac{1}{2}} + 1)^2} = \frac{dy}{dx}[ y^2]
  4. Basic Power Rule [Addition/Subtraction, Chain Rule]:                               \displaystyle \frac{\frac{1}{2}x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - \frac{1}{2}y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}{(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  5. Factor:                                                                                                           \displaystyle \frac{\frac{1}{2} \bigg[ x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1) \bigg] }{(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  6. Rewrite:                                                                                                         \displaystyle \frac{x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}{2(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  7. Rewrite:                                                                                                         \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}= 4yy'(y^\Big{\frac{1}{2}} + 1)^2
  8. Isolate <em>y'</em> terms:                                                                                             \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) = 4yy'(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}
  9. Factor:                                                                                                           \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) = y' \bigg[ 4y(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}(x^\Big{\frac{1}{2}} + 1)} \bigg]
  10. Isolate <em>y'</em>:                                                                                                       \displaystyle \frac{x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1)}{4y(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}(x^\Big{\frac{1}{2}} + 1)} = y'
  11. Rewrite/Simplify:                                                                                           \displaystyle y' = \frac{\sqrt{y} + y}{4\sqrt{x}y \Big( y^\Big{\frac{3}{2}} + \sqrt{y} + 2y \Big) + \sqrt{x} + x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Find x<br><br> A <br> 4 <br> B <br> 4/2 <br> C<br> 4/3<br> D <br> 8/3
kaheart [24]

Answer:

c

Step-by-step explanation:

6 0
3 years ago
Marie has a small copy of Renny Margaret's famous painting the Schoolmaster her copy has the dimensions of 2 inch by 1.5 in the
Alexandra [31]

Answer:

The answer is 743.4 square inches

Step-by-step explanation:

1. find the length-   2 x 40=80 cm

2. find the width-  1.5 x 40= 60cm

3. find area (Length x width)-  80 x 60= 4800 square cm

4. find length but in inches-   1in=2.54cm  length=80/2.54 = 31.5 inches

5. find width but in inches-  width= 60/2.54= 23.6 inches

6. Find area(length x width)-  31.5 x 23.6= 743.4 square inches

6 0
3 years ago
The middle school ski club plans ski trips and participants in ski competitions. If 25% of the students participate in ski compe
KonstantinChe [14]

Answer:

7/9

Step-by-step explanation:

6 0
3 years ago
I’ve looked at this for a while, can someone clear up the answers for me? I can’t figure it out.
navik [9.2K]
What answers? I don't see any
4 0
3 years ago
An experiment for a chemical reaction involves mixing 1 teaspoon of yeast with 1/4 cup of hydrogen peroxide. Delray wants to do
arlik [135]

Answer:

1/8 cups

Step-by-step explanation:

For every quarter of a cup of peroxide, there is a teaspoon of yeast. there are six quarter cups in one and a half cups, so there is 6 tsp of yeast. Divide 6 by 48 (to bring it into cups) and that leaves you with 0.125 cups, or 1/8 cups. Hope this helps!

7 0
3 years ago
Other questions:
  • Please help me on this question
    6·2 answers
  • If the graph of y = |x| is translated so that the point (1, 1) is moved to (4, 1), what is the equation of the new graph?
    10·2 answers
  • For her birthday, Kendra received a gift card in the mail from her grandparents. The gift card was worth $50. Kendra thought, si
    13·1 answer
  • Stephanie is saving money to buy a new computer. So far she has saved $200. Write an inequality to show how much she needs to sa
    8·1 answer
  • Can you guys help for 25 pts I need this done ASAP!!! <br> PlzZzZzZz help thank you
    15·1 answer
  • How do u solve this its pre-algebra 4x – 5y = 20
    15·2 answers
  • Scientists discovered that a new spider can grow 5 legs every year, on top of the 4 legs it already starts with. Scientists used
    10·1 answer
  • Without graphing, tell if this pair is on the graph<br> 5x-3y=14, (-1,-6)
    5·1 answer
  • Can someone give me the correct answer to this problem please?
    12·2 answers
  • Please help I'll mark brainliest​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!