1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
6

Find y' for the following. ​

Mathematics
1 answer:
Phoenix [80]3 years ago
4 0

Answer:

\displaystyle y' = \frac{\sqrt{y} + y}{4\sqrt{x}y \Big( y^\Big{\frac{3}{2}} + \sqrt{y} + 2y \Big) + \sqrt{x} + x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \frac{\sqrt{x} + 1}{\sqrt{y} + 1} = y^2

<u>Step 2: Differentiate</u>

  1. Implicit Differentiation:                                                                                 \displaystyle \frac{dy}{dx} \bigg[ \frac{\sqrt{x} + 1}{\sqrt{y} + 1} \bigg] = \frac{dy}{dx}[ y^2]
  2. Quotient Rule:                                                                                               \displaystyle \frac{(\sqrt{x} + 1)'(\sqrt{y} + 1) - (\sqrt{y} + 1)'(\sqrt{x} + 1)}{(\sqrt{y} + 1)^2} = \frac{dy}{dx}[ y^2]
  3. Rewrite:                                                                                                         \displaystyle \frac{(x^\Big{\frac{1}{2}} + 1)'(y^\Big{\frac{1}{2}} + 1) - (y^\Big{\frac{1}{2}} + 1)'(x^\Big{\frac{1}{2}} + 1)}{(y^\Big{\frac{1}{2}} + 1)^2} = \frac{dy}{dx}[ y^2]
  4. Basic Power Rule [Addition/Subtraction, Chain Rule]:                               \displaystyle \frac{\frac{1}{2}x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - \frac{1}{2}y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}{(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  5. Factor:                                                                                                           \displaystyle \frac{\frac{1}{2} \bigg[ x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1) \bigg] }{(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  6. Rewrite:                                                                                                         \displaystyle \frac{x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}{2(y^\Big{\frac{1}{2}} + 1)^2} = 2yy'
  7. Rewrite:                                                                                                         \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) - y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}= 4yy'(y^\Big{\frac{1}{2}} + 1)^2
  8. Isolate <em>y'</em> terms:                                                                                             \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) = 4yy'(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}y'(x^\Big{\frac{1}{2}} + 1)}
  9. Factor:                                                                                                           \displaystyle x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1) = y' \bigg[ 4y(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}(x^\Big{\frac{1}{2}} + 1)} \bigg]
  10. Isolate <em>y'</em>:                                                                                                       \displaystyle \frac{x^\Big{\frac{-1}{2}}(y^\Big{\frac{1}{2}} + 1)}{4y(y^\Big{\frac{1}{2}} + 1)^2 + y^\Big{\frac{-1}{2}}(x^\Big{\frac{1}{2}} + 1)} = y'
  11. Rewrite/Simplify:                                                                                           \displaystyle y' = \frac{\sqrt{y} + y}{4\sqrt{x}y \Big( y^\Big{\frac{3}{2}} + \sqrt{y} + 2y \Big) + \sqrt{x} + x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
How many more pieces of mail were handled by the United States Postal Service in 199519951995 than in 196519651965?
Jobisdone [24]

Answer:

good luck

Step-by-step explanation:

7 0
3 years ago
2. A(n) _______________ system is a system of equations with an infinite number of solutions.
Anna11 [10]

Answer:

If a system has infinitely many solutions, then the lines overlap at every point. In other words, they're the same exact line! This means that any point on the line is a solution to the system. Thus, the system of equations above has infinitely many solutions.

Step-by-step explanation:

4 0
3 years ago
Mr. Johnson is planning what to wear tomorrow to school. He has a white shirt, a plaid shirt, and a blue shirt. He has four pair
myrzilka [38]

Answer:

12 different possibilities

Step-by-step explanation:

times them together...

3 different shirt options and 4 different pants options so,

3 x 4 = 12

or you could draw out a tree to show all of the different combinations...

7 0
3 years ago
Unity makes $56 a week, plus 15 percent of the cost of meals that she serves. Use the equation, y = 0.15x + 56, to predict what
seropon [69]
X represents the cost of meals served in a week. The cost of meals or worth was $435, therefore, x = 435. 0.15 x 435= 65.25
Since she makes $56 along with 15% of meals served (which is $65.25), you add those together to get her final income the week she serves $435 worth of meals, so...
66.25+56=121.25
Unity makes $121.25 in a week that she serves $435 worth of meals.
3 0
3 years ago
Pls help answer this soon!!!!!
vladimir1956 [14]
13a) y = 0.45x

13b) 52 * 0.45 = 23.4

13c) I will let u figure this one out
7 0
4 years ago
Read 2 more answers
Other questions:
  • using scales of 2cm to 1 units on the x axis and 2cm to 4 units on the y-axis ,draw the graph of y = 2x square - 7 - 9 for 3 &lt
    12·1 answer
  • What is a situation that can be modeled by the expression 6 * 24 - 5
    7·2 answers
  • Mick paid 2.94 in sales tax on an item that costed 42.00 before tax at the rate how much would he pay in sales tax for an item t
    12·2 answers
  • Correct or incorrect? the difference of two numbers is always less than at least one of the numbers
    9·1 answer
  • 3.625 simplify as a mixed number
    5·1 answer
  • Use the relationships between the angles to find the value of x.
    7·2 answers
  • ASAP Which of the following has 5.1012 in written form?
    9·2 answers
  • BRAINLIEST TO WHOEVER ANSWERS FIRST!
    13·1 answer
  • SOMEONE PLEASE HELP ASAP!!!?? ILL GIVE U BRAINLIST
    9·2 answers
  • PLEASE HELP 50 POINTS I WILL GIVE BRAINLIEST
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!