Since, a regular hexagon has an area of 750.8 square cm and The side length is 17 cm.
We have to find the apothem of the regular hexagon.
The formula for determining the apothem of regular hexagon is
, where 's' is any side length of regular hexagon and 'n' is the number of sides of regular hexagon.
So, apothem = 
= 
= 
= 14.78 units
Therefore, the measure of apothem of the regular hexagon is 14.7 units.
Option B is the correct answer.
Idk exactly what your question is asking, but I think you are doing genetics? If you are then you are talking about a punnet square. All four boxes should be heterozygous(Cc). Hope this helps.
Answer: a = 5.5
Step-by-step explanation:
95 = -20a - 25 + 10
95 = -20a - 15
-20a = 110
a = 5.5
Answers:
- Exponential and increasing
- Exponential and decreasing
- Linear and decreasing
- Linear and increasing
- Exponential and increasing
=========================================================
Explanation:
Problems 1, 2, and 5 are exponential functions of the form
where b is the base of the exponent and 'a' is the starting term (when x=0).
If 0 < b < 1, then the exponential function decreases or decays. Perhaps a classic example would be to study how a certain element decays into something else. The exponential curve goes downhill when moving to the right.
If b > 1, then we have exponential growth or increase. Population models could be one example; though keep in mind that there is a carrying capacity at some point. The exponential curve goes uphill when moving to the right.
In problems 1 and 5, we have b = 2 and b = 1.1 respectively. We can see b > 1 leads to exponential growth. I recommend making either a graph or table of values to see what's going on.
Meanwhile, problem 2 has b = 0.8 to represent exponential decay of 20%. It loses 20% of its value each time x increases by 1.
---------------------
Problems 3 and 4 are linear functions of the form y = mx+b
m = slope
b = y intercept
This b value is not to be confused with the previously mentioned b value used with exponential functions. They're two different things. Unfortunately letters tend to get reused.
If m is positive, then the linear function is said to be increasing. The line goes uphill when moving to the right.
On the other hand if m is negative, then we go downhill while moving to the right. This line is decreasing.
Problem 3 has a negative slope, so it is decreasing. Problem 4 has a positive slope which is increasing.