Isn't it "gravity" this would makes sense because grvaity difines weight
Answer:
(d) Negative.
Explanation:
let's test each at a time.
(a) It can't be 0, because cup would slide back other wise.
(b) Positive, well if forward is positive, than the work done against the forward acceleration must be negative , so it can't be positive.
(c) Equal to non-conservative work done by the car's engine.
well no, because work done by car's engine dosen't go all of it into getting car to move, so it can't be that.
(d) negative, this look like it, because work that friction does must be nagative to counteract positive thrust of car which is positive and in forward direction.
(d) this can't be true.
So the answer is (d) negative.
6489 for the founding product
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.