Answer:
<em>1</em><em>. </em><em>A body is said to be at rest if its position does not change with respect to its surroundings.</em>
<span>An example of a high energy electromagnetic wave is "X-Ray"
When car runs, it's chemical energy (gasoline) converts into mechanical energy
Temperature is the measure of hotness or coldness of the body, so when heat expose to a substance, it's degree of hotness increases & it's temperature increases
Hope this helps!
</span>
The answer to the question is A
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN