<span>0.0292 moles of sucrose are available.
First, lookup the atomic weights of all involved elements
Atomic weight Carbon = 12.0107
Atomic weight Hydrogen = 1.00794
Atomic weight Oxygen = 15.999
Now calculate the molar mass of sucrose
12 * 12.0107 + 22 * 1.00794 + 11 * 15.999 = 342.29208 g/mol
Divide the mass of sucrose by its molar mass
10.0 g / 342.29208 g/mol = 0.029214816 mol
Finally, round the result to 3 significant figures, giving
0.0292 moles</span>
Answer:
B
Explanation:
A. Is wrong
This definition in this option does not fully define what an open system entails. It only gave a one sided definition of the phenomenon on ground
B is correct
In an open system, matter and energy should be free to leave
C is incorrect
This is clearly a one sided definition like A and should not be taken serious
D is incorrect
D is talking essentially about what a closed system is
Answer:
The vacuum would stop
Explanation:
if the lid opened the there would be no more pressure therefor no vacuum.
Explanation:
<em>An</em><em> </em><em>independent</em><em> </em><em>variable</em><em> </em><em>is</em><em> </em><em>defines</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>variable</em><em> </em><em>that</em><em> </em><em>is</em><em> </em><em>changed</em><em> </em><em>or</em><em> </em><em>controlled</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>scientific</em><em> </em><em>experiment</em><em>. </em>
Dropping a 50 gram piece of metal with a temperature of 125° Celsius into 1000 grams of water at 20° Celsius would lead to a heat loss by the metal and an heat gain by the water. These loss and gain should be equal since energy cannot be created nor destroyed.