Answer:
Internally reversible is the answer.
Explanation:
The answer is yes. A chemical change occurred.
Chemical change is defined as the rearrangement or alteration in the of atoms in one or more substance which result in the formation of a new substance.
In the above, you mixed two clear liquids and the result was a new substance which is a colored solid precipitate at the bottom of the beaker.
This means that changes in the atoms of the two clear liquids occurred leading to the formation of this new solid substance.
This means that chemical change has occurred.
Hope this helps :)
Answer: The correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Explanation:
Hello! Let's solve this!
We will analyze each of the options:
A. The group number of the element provides a clue to the number of valence electrons: it is correct, since it provides the number of valence electrons.
B. An element with eight valence electrons is chemically unstable: this is not correct, since elements with eight electrons in the valence shell cannot react because they already have the last complete shell. Therefore, they are chemically stable.
C. The points must be placed one at a time on each side of the chemical symbol: it is correct, because that is the way to make the point diagram.
D. An atom is chemically stable if all the points are paired: this is correct since this verifies that the point diagram has been done well.
We conclude that the correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!!! :D
Hey there!
To calculate the percent by mass of the Ca(NO₃)₂ we need to find the total mass first by adding.
896.92 + 22.63 = 919.55
In total, the solution is 919.55 grams.
To find the percent of Ca(NO₃)₂ in the solution, divide the mass of Ca(NO₃)₂ by the total mass and multiply by 100.
22.63 ÷ 919.55 = 0.0246
0.0246 x 100 = 2.46
Ca(NO₃)₂ makes up 2.46% of the solution.
Hope this helps!
Answer:
H₂SO₄
Explanation:
Given data:
Number of moles of H₂SO₄ = 15 mol
Number of moles of Fe = 13 mol
Which reactant is limiting reactant = ?
Solution:
Chemical equation:
3H₂SO₄ + 2Fe → Fe₂(SO₄)₃ + 3H₂
now we will compare the moles reactant with product.
H₂SO₄ : Fe₂(SO₄)₃
3 : 1
15 : 1/3×15 = 5
H₂SO₄ : H₂
3 : 3
15 : 15
Fe : Fe₂(SO₄)₃
2 : 1
13 : 1/2×13 = 6.5
Fe : H₂
2 : 3
13 : 3/2×13 = 19.5
Number of moles of product formed by H₂SO₄ are less thus it will act as limiting reactant.