You've already told us the speed in ft/s . It's right there in the question. You said that light travels about 982,080,000 ft/s.
We don't know how accurate that number is, but for purposes of THIS question, that's the number we're going with.
In scientific notation, it's written . . . <em>9.8208 x 10⁸ ft/s .</em>
We don't know where you were going with the number of seconds in a year. But to answer the question that you eventually asked, it turned out that we don't even need it.
Complete Question
A commuter train passes a passenger platform at a constant speed of 39.6 m/s. The train horn is sounded at its characteristic frequency of 350 Hz.
(a)
What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding
(b) What wavelength is detected by a person on the platform as the train approaches?
Answer:
a

b

Explanation:
From the question we are told that
The speed of the train is 
The frequency of the train horn is 
Generally the speed of sound has a constant values of 
Now according to dopplers equation when the train(source) approaches a person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as

substituting values


Now according to dopplers equation when the train(source) moves away from the person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as

substituting values


The overall change in frequency is detected by a person on the platform as the train moves from approaching to receding is mathematically evaluated as



Generally the wavelength detected by the person as the train approaches is mathematically represented as



Mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Answer:
last answer
Explanation:
gripping it with the blade facing downward is the most efficient and safe way to use an exacto knife
A because water has more volume when it's warmer