Answer:
electromagnetic waves
Explanation:
"wave" is a common term for a number different ways in which energy is transferred
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2
Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.
-F=25(-1.8)
F=45N
Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.
45=u(25g)
45=u(25*10)
Therefore, the coefficient of friction is 0.18
Hope that helps
(100, 108)
Due to
1.2x90=108
100, 108
The average velocity of the car for the whole journey is 69.57 km/h.
The given parameters:
- <em>Length of the road, L = 320 km</em>
- <em>Distance covered = 240 km at 75 km/h</em>
- <em>time spent refueling, t₂ = 0.6 hr</em>
- <em>Final velocity, = 100 km/hr</em>
The time spent by the before refueling is calculated as follows;

The time spent by the car for the remaining journey;

The total time of the journey is calculated as follows;

The average velocity of the car for the whole journey is calculated as follows;

Learn more about average velocity here: brainly.com/question/6504879