Answer:
46.19 L
Explanation:
The efficiency of the solar water heater is 40% which means 40% of the solar energy is converted to useful energy, ie. used to heat the water.
Useful energy = P = solar energy * available area * efficiency
P = 200 W/m^2 * 29.5 m^2 * 40%
P = 2360 W = 2.36 kJ/s
This means that 2.36 kJ of useful energy will be utilized per second. Converting this to the useful energy in hour gives us:
Average energy in one hour = 2.36 kJ/s * 3600 s/h = 8496 kJ
The specific heat capacity of water is 4.18 kJ/kg.C which means it will take 4.18 kJ of energy to raise the temperature of 1 kg of water by 1 degree C. Equating the energy change of the water for the given temperature rise and mass (unknown) to the useful energy utilized in one hour, we can solve to determine the unknown mass. This will give us the mass of water heated in one hour:
Energy = mass * specific heat capacity * (final temperature - initial temperature)
8496 = mass * 4.18 * (60 - 16)
mass = 46.19 kg
Lastly, this mass has to be converted to volume. Assuming density of water is constant through out the heating process:
volume = mass / density
volume = 46.19 kg / 1 kg/L
volume = 46.19 L
Work is equal to the force applied times the displacement. Since you pull the wagon at constant speed this means that there is no acceleration on the wagon as it does not change speed. F=ma. Since a=0, F=0. Therefore no work has been done in this situation
Trees can be a renewable source , we use them to breath , we make paper out of them , we make houses and etc.
i hope this helps
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
- is the acceleration of the object in ,
- is the net force on the object in Newtons, and
- is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be . The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
Answer:
Explanation:
a )
If it is totally absorbed pressure is calculated as follows .
Pressure = I / c where I is intensity of light falling .
= 1000 / 3 x 10⁸
= 3.33 x 10⁻⁶ N / m²
b ) weight of tritium atom
= 3 x 1.67 x 10⁻²⁷ kg
acceleration = force / mass
= 3.33x 10⁻⁶ / 3 x 1.67 x 10⁻²⁷
= .6646 x 10²¹ m /s²
= 66.46 x 10¹⁹ m / s²