Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
Answer:
Option C
Explanation:
Given that
Motor force is 250 N
Force of friction is 750 N
Weight is 8500 N
And, the normal force is 8500 N
Now based on the above information
Here length of the rector shows the relative magnitude forward force i.e. 250 N i..e lower than the frictional force i.e. backward and weight i.e. 8500 would be equivalent to the normal force
Answer: Force = Mass X Acceleration
F = 5 x 2
F = 10 N
Answer:
Shiloh dynasty, jucie wrld or xxx or twenty one plot
Explanatio
Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s