Answer:
Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a light quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely propagating electromagnetic waves consisted of photons that are particles of light in the same sense that electrons or other massive particles are particles of matter. A beam of monochromatic light of wavelength \lambda (or equivalently, of frequency f) can be seen either as a classical wave or as a collection of photons that travel in a vacuum with one speed, c (the speed of light), and all carrying the same energy, {E}_{f}=hf. This idea proved useful for explaining the interactions of light with particles of matter.
Answer:
11.) g = 3.695 m/s^2
12.) g = 8.879 m/s^2
13.) E = 8127 N/C
Explanation:
11.) Given that the
Mercury mass M = 3.3 × 10^23kg
Radius r = 2.44 ×10^6 m
Gravitational constant G = 6.67408 × 10^-11 m3kg-1 s^-2
Gravitational field strength g can be calculated by using the formula below
g = GM/r^2
Substitutes all the parameters into the formula
g = (6.67408 × 10^-11 × 3.3 × 10^23)/(2.44×10^6)^2
g = 2.2×10^13/5.954×10^12
g = 3.695 m/s^2
12.) Given that the
Venus mass M = 4.87×10^24kg
Radius r = 6.05 × 10^6 m
Using the same formula for gravitational field strength g
g = GM/R2
Substitute all the parameters into the formula
g = (6.67408 × 10^-11 × 4.87×10^24)/(6.05×10^6)^2
g = 3.25×10^14/3.66×10^13
g = 8.879 m/s^2
13.) Given that the
Charge = 2.26 nC = 2.26×10^-9
Distance d = 0.05m
Electric field strength E can be calculated by using the formula below
E = Kq/d^2
Where
K = electrostatic constant 8.99 × 10^9 Nm2/C2
Substitutes all the parameters into the formula
E = (8.99 × 10^9 × 2.26×10^-9)/0.05^2
E = 20.3174/2.5×10^-3
E = 8126.96 N/C
Answer:
Independent Variable: Amount of Sunlight
Dependent Variable: Growth of Seedling
Constant: Things that don't change like kind of soil, type of pot, amount of water, etc.
Explanation:
I'm not sure which variable (independent, dependent, etc) so I'm going to do them all
Answer:
12.24 m/s
Explanation:
Speed: This can be defined as the rate of change of distance with time. The S.I unit of speed is m/s.
Using the formula,
a = v/t................ Equation 1
Where a = acceleration of the sprinter, v = speed of the sprinter, t = time.
making v the subject of the equation,
v = at ................. Equation 2
Given: a = 5.1 m/s², t = 2.4 s.
Substitute into equation 2
v = 5.1(2.4)
v = 12.24 m/s.
Hence, the speed of the sprinter = 12.24 m/s
121.92 is the answer I believe