1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
10

If the attacking team sends the ball out-of-bounds over a goal line, what is the next play?

Physics
1 answer:
dusya [7]3 years ago
6 0
A goal kick will take place if the ball is not inside of the posts but if the ball bounces back from inside the frame it is definitely a goal
You might be interested in
Bill and Amy want to ride their bikes from their neighborhood to school which is 14.4 kilometers
Vedmedyk [2.9K]
First we should convert 14.4 km into meters using the conversion factor 1km = 1000m; thus, 14.4 km = 14,400 m. Next, we should convert all minutes into seconds <span>using the conversion factor 1 min = 60 seconds; thus, 40 mins = 2400 seconds while 20 minutes = 1200 seconds. 
Speed = distance over time
Amy's speed = 14400 m / 2400 sec = 6m/s
Bill's time is 1200 sec + Amy's which is 2400 sec
Bill's speed = 14400m / 3600 sec  = 4 m/s

Therefore, Amy is faster than Bill with 2 m/s difference.</span>
3 0
2 years ago
A 20-kg block is held at rest on the inclined slope by a peg. A 2-kg pendulum starts at rest in a horizontal position when it is
gregori [183]

Complete Question

The diagram of this question is shown on the first uploaded image

Answer:

The distance the block slides before stopping is d = 0.313 \ m

Explanation:

The free body diagram for the diagram in the question is shown

From the diagram the angle is \theta = 25 ^o

         sin \theta  = \frac{h}{d}

Where h = h_b - h_a

     So      d sin \theta  = h_b - h_a

From the question we are told that

      The mass of the block is  m = 20 \ kg

       The mass of the pendulum is  m_p = 2 \ kg

       The velocity of the pendulum at the bottom of swing is v_p = 15 m/s

        The coefficient of restitution is  e =0.7

         The coefficient of kinetic friction is  \mu _k = 0.5

The velocity of the block after the impact is mathematically represented as

            v_2 f = \frac{m_b - em_p}{m_b + m_p}  * v_2 i + \frac{[1 + e] m_1}{m_1 + m_2 } v_p

Where  v_2 i is the velocity of the block  before collision which is  0

                  = \frac{20 - (0.7 * 2)}{(2 + 20)} * 0 + \frac{(1 + 0.7) * 2 }{2 + 20}   * 15

Substituting value

                   v_2 f = 2.310\  m/s

According to conservation of energy principle

      The energy at point a  =  energy at point b

So    PE_A + KE _A = PE_B + KE_B  +  E_F

Where  

         PE_A is the potential energy at A which is mathematically represented as

          PE_A = m_b gh_a = 0 at the bottom

      KE _A is the kinetic energy at A  which is mathematically represented as

               K_A = \frac{1}{2} m_b * v_2f^2                  

         PE_B is the potential energy at B which is mathematically represented as  

            PE_B = m_b gh

From the diagram h = h_b -h_a

       PE_B = m_b g(h_b - h_a)

KE _B is the kinetic energy at B  which is 0 (at the top )

Where is E_F is the workdone against velocity  which from the diagram is

      \mu_k m_b g cos 25 *d

So

   \frac{1}{2} m_b v_2 f^2  = m_b g h_b + \mu_k m_b g cos \25 * d

Substituting values

   \frac{1}{2}  * 20 * 2.310^2 = 20 * 9.8 * d sin(25)  + 0.5* 20 * 9.8 * cos 25 * d    

So

       d = 0.313 \ m

       

   

6 0
3 years ago
Have you ever visited an amusement park and taken a ride on a parachute drop ride? These types of rides take the passengers to a
Triss [41]

Answer & Explanation:

a)

Lenz's law states that the direction of induced electric current is always such that, it opposes the change in magnetic flux.

In a drop ride, the hub on which we sit and are hung to is an electromagnet and there are many such magnets mounted on the columns of the support. what happens is these electromagnets (in support) generate a repulsive magnetic field with respect to the field generated by the hub solenoids. this results in lift generation till the top of ride. reaching the top, the bar solenoids are at their maximum repulsive force. Then the solenoids in column are set current less means electric supply is cut off. this makes you fall under the effect of gravity. by the time you are half way down, column  solenoids are turned on again. As the hub solenoid approaches every single electromagnet in supporting columns. Due to change in magnetic field (with respect to lenz's law) an opposing current induces further providing resistance to the fall, this continues until the ride comes to rest completely. This is how it works.  

c) In addition, highly compressive springs, dampers, viscous dampers, etc. could be used in its place.

but the above listed cannot provide a differential braking,

have a limited lifecycle,

will provide resistance during lift also,

require higher maintenance

3 0
3 years ago
What concept or principle best explains why
andreev551 [17]

Answer:

d. Newton's first law

I hope this helps you

5 0
2 years ago
As a pendulum bob swings back and forth several times, the maximum height it reaches becomes less and less.
Ymorist [56]

Answer:

A or B

Explanation:

4 0
3 years ago
Other questions:
  • Which planet has the largest day-night temperature difference?
    7·1 answer
  • Gasoline flows in a long, underground pipeline at a constant temperature of 15o C (rho = 680 kg/m3 ; ν = 4.6 × 10-7 m2 /s). Two
    6·1 answer
  • In which of the following situations are there a force on the object balanced
    15·1 answer
  • When do cells use oxygen to release energy
    11·1 answer
  • A neutral metal ball is suspended by a string. A positively charged insulating rod is placed near the ball, which is observed to
    10·1 answer
  • Please help
    11·1 answer
  • Identify the step of meiosis
    15·1 answer
  • Non renewable resources example ​
    11·1 answer
  • A plane starts from rest accelerates to 40 m/s in 10 seconds. How far did the plane travel during this time?
    12·1 answer
  • 5. A.63kg ball is moving at 4.3 m/s. What is the momentum of the ball?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!