Answer:
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
Explanation:
When we balance a chemical equation, what we are trying to do is to achieve the same number of atoms for each element on both sides of the arrow. On the right of the arrow is where we can find the products, while the reactants are found on the left of the arrow.
We usually balance O and H atoms last.
AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 1
Cl --- 3
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
2 AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of As atoms is now balanced.
2 AsCl₃ + 3 H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of S atoms is now equal on both sides.
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
The equation is now balanced.
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.
I think it is 11% I read it on a article on msn.
Glycosidic bonds in starch and ester bonds in triglycerides. The glycosidic bond is considered to be the covalent synthetic bonds that connection ring-molded sugar particles to different atoms. The frame by a buildup response between a liquor or amine of one particle and the anomeric carbon of the sugar, and hence, might be O-connected or N-connected.