Answer:
So, you're dealing with a sample of cobalt-60. You know that cobalt-60 has a nuclear half-life of
5.30
years, and are interested in finding how many grams of the sample would remain after
1.00
year and
10.0
years, respectively.
A radioactive isotope's half-life tells you how much time is needed for an initial sample to be halved.
If you start with an initial sample
A
0
, then you can say that you will be left with
A
0
2
→
after one half-life passes;
A
0
2
⋅
1
2
=
A
0
4
→
after two half-lives pass;
A
0
4
⋅
1
2
=
A
0
8
→
after three half-lives pass;
A
0
8
⋅
1
2
=
A
0
16
→
after four half-lives pass;
⋮
Explanation:
now i know the answer
In a neutral atom they are both equal, and their even quantities makes the atom neutral...
Answer:
0.0498 mol
Explanation:
Number of moles = concentration in mol/L × volume in L
Concentration = 1 M = 1 mol/L
Volume = 49.8 mL = 49.8/1000 = 0.0498 L
Number of moles = 1×0.0498 = 0.0498 mol
Answer : Right
Explanation : The direction of reaction tends to proceed on right side under standard conditions; If the change in standard free energy ΔG for a particular reaction is negative. Also if the elements in their most stable forms as they exist under standard conditions. Then ΔG determines the direction and extent of chemical change. But under standard conditions the direction of the reaction will be to right.
The final step in a typical titration, that is here an acid base one would be to finally find the concentration of your unknown substance whether that be the acid or the base. The other steps are used before this to come to the correct calculation and conclusion.