Answer: 7.2418 x 10^-19 joules
Explanation:
1 eV equals 1.602 x 10^-19 joules
Then 4.52eV will be multiplied by the above value to give 7.2418 x 10^-19 joules which is the energy required to dissociate the hydrogen molecule
The reactant is Mercury (II) Oxide while the products are Mercury and Oxygen separately.
This is because the reactants are typically always on the left side of the yields symbol. In this decomposition reaction, it would still be the same as at the end of the reaction, there were to products produced: Mercury and Oxygen.
Products tend to always be on the right side of the yields symbol, they're what comes out of a reaction no matter what type.
Hope this helps!
Answer: Magnet
Explanation:Using a magnet is the best separating technique to be deployed in this case. The nails are easily picked out by just holding a magnet over the sandbox.
Answer:
so with every stoichiometry problem with a mass it will make it so you can do the conversion factor with reactants or products.
if you dont understand unit conversions try to study how to set it up. anyways
a.) C12H22O11 has a mass of 342.01 Grams per mole
divide 1.202 G by 342.01 G to get 0.004 miles
b.) you're just taking the AMU of each element in the chemical multiply it by how many there is of it in the chemical, then divide it by the mass of a mole of the chemical.
c.) you take your answers of part b and multiply them by Avogadro's number