Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Answer:
C. 1.17 grams
Explanation:
- The molarity is the no. of moles of solute in a 1.0 L of the solution.
<em>M = (mass/molar mass)solute x (1000/ V)</em>
M = 0.1 M, mass = ??? g, molar mass of NaCl = 58.44 g/mol, V = 200.0 mL.
∴ mass of NaCl = (M)(molar mass)(V)/1000 = (0.1 M)(58.44 g/mol)(200.0 mL)/1000 = 1.168 g ≅ 1.17 g.
Answer is 2KClO3 3O2 + 2KCl
There are 4 atoms in sodium hydrate
3.0 × 10¹¹ RBC's (or) 3E11 RBC's
Solution:
Step 1: Convert mm³ into L;
As,
1 mm³ = 1.0 × 10⁻⁶ Liters
So,
0.1 mm³ = X Liters
Solving for X,
X = (0.1 mm³ × 1.0 × 10⁻⁶ Liters) ÷ 1 mm³
X = 1.0 × 10⁻⁷ Liters
Step 2: Calculate No. of RBC's in 5 Liter Blood:
As given
1.0 × 10⁻⁷ Liters Blood contains = 6000 RBC's
So,
5.0 Liters of Blood will contain = X RBC's
Solving for X,
X = (5.0 Liters × 6000 RBC's) ÷ 1.0 × 10⁻⁷ Liters
X = 3.0 × 10¹¹ RBC's
Or,
X = 3E11 RBC's