<u>Answer</u>
40%
<u>Explanation</u>
A parentage value is a value that has been compared to 100.
Percentage = (change in the value)/(the original value) × 100%
= (35-25)/25 × 100%
= 10/25 × 100%
= 40%
Answer:
x=7 and m<LMN = 120
Step-by-step explanation:
if MO bisects LMN then 13x - 31 must be equal to x + 53
13x - x = 53 + 31
12x = 84
x = 7
and
13x - 31 + x + 53 = m<LMN
14x + 22 = m<LMN
since x is 7
14×7 + 22 = 120
Answer:
<h2>x=-5</h2>
Step-by-step explanation:




For this case we must simplify the following expression:
![\sqrt [3] {\frac {12x ^ 2} {16y}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B%5Cfrac%20%7B12x%20%5E%202%7D%20%7B16y%7D%7D)
We rewrite the expression as:
![\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\frac{\sqrt[3]{3x^2}}{\sqrt[3]{4y}}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B4y%7D%7D%3D)
We multiply the numerator and denominator by:
![(\sqrt[3]{4y})^2:\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{\sqrt[3]{4y}*(\sqrt[3]{4y})^2}=](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%3A%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%5Csqrt%5B3%5D%7B4y%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%3D)
We use the rule of power
in the denominator:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{(\sqrt[3]{4y})^3}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%28%5Csqrt%5B3%5D%7B4y%7D%29%5E3%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B4y%7D%3D)
Move the exponent within the radical:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{16y^2}}{4y}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{2^3*(2y^2)}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B16y%5E2%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B2%5E3%2A%282y%5E2%29%7D%7D%7B4y%7D%3D)
![\frac{2\sqrt[3]{3x^2}*(\sqrt[3]{(2y^2)}}{4y}=\\\frac{2\sqrt[3]{6x^2*y^2}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B%282y%5E2%29%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B2%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B4y%7D%3D)
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)
Answer:
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)