If you're using the app, try seeing this answer through your browser: brainly.com/question/3242555——————————
Solve the trigonometric equation:

Restriction for the solution:

Square both sides of
(i):

![\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5Ccdot%20%281-sin%5E2%5C%2Cx%29-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2-2%5C%2Csin%5E2%5C%2Cx-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B-%5C%2C%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2Cx%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D)
Let

So the equation becomes

Solving the quadratic equation:



You can discard the negative value for
t. So the solution for
(ii) is

Substitute back for
t = sin x. Remember the restriction for
x:

where
k is an integer.
I hope this helps. =)
Fractions Area Volume length h
Answer: Choice C) 124 square cm
------------------------------------------------------------------
Explanation:
Let's calculate the area of the trapezoid shown
b1 and b2 are the parallel bases; h is the height of the 2D trapezoid
b1 = 2
b2 = 5
h = 1.5
A = h*(b1+b2)/2
A = 1.5*(2+5)/2
A = 1.5*7/2
A = 10.5/2
A = 5.25
The area of one 2D trapezoid is 5.25 sq cm
There are two of these trapezoids that form the base faces of the trapezoidal prism. So the total base area is 2*5.25 = 10.5 sq cm
Keep this value (10.5) in mind. We'll use it later.
------------
Now onto the lateral surface area (LSA)
It turns out that the formula for the LSA is
LSA = p*d
where
p = perimeter of the trapezoid shown
d = depth or height of the 3D trapezoid (I'm not using h as it was used earlier)
This formula works for any polygonal base. It doesn't have to be a trapezoid.
In this case the perimeter is,
p = 1.7+2+2.65+5
p = 11.35
So
LSA = p*d
LSA = 11.35*10
LSA = 113.5
Add this LSA to the base area found earlier
10.5+113.5 = 124
The total surface area is 124 square cm
#2 Is Complementary because angle 1 and 2 are equal to 90 degrees
#4 Is Adjacent. That mean front he middle point/vertex both angles are on the same side and don’t over lap.
To finish the rest i have some notes.