Distance is a scalar and displacement is a vector
Explanation:
Distance and displacement are two different quantities. Let's review them in detail:
- Distance is a scalar quantity (only a number followed by unit). Distance represents the total length of the path covered by an object during its motion. Therefore, it does not take into account the direction of motion, in its calculation.
- Displacement is a vector quantity, so it has a magnitude, a unit and a direction. Displacement is a vector connecting the initial position to the final position of the motion of an object. Therefore, in its calculation, the direction of motion must be taken into account.
Let's see an example in order to understand distance and displacement better.
Imagine a person moving 5 meters forward and then 2 meters backward. In this case:
- The distance covered by the man is just the total lenght of the path covered, therefore: 5 + 2 = 7 meters
- The displacement of the man is the distance between the initial and final position. Since the man moved 5 m forward and 2 m backward, his final position is 3 meters forward, therefore the displacement is 3 m in the forward direction.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
Clouds form when below the dew point
The total thrust, expressed in pounds or tons, that the hydraulic-feed mechanism on a drill can impose on a drill string; also, the pressure of the fluid within the hydraulic cylinders, generally expressed in pounds per square inch. Ref: Long.
Hydraulic pressure is the force imparted per unit area of a liquid on the surfaces which it has contact. Liquids are incompressible, and as such, when a load acts
Answer:
28.3 kg
Explanation:
Assuming the ground is level, the normal force equals the weight.
N = mg
277 N = m × 9.8 m/s²
m = 28.3 kg