Answer:

Step-by-step explanation:
so you already have the formula, which is
![\sqrt[3]{ \frac{3v}{4\pi} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3v%7D%7B4%5Cpi%7D%20%7D%20)
the v represents Volume.
and 3v would be 3×volume.
![\sqrt[3]{ \frac{3 \times 1000}{4 \times \pi} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%20%5Ctimes%201000%7D%7B4%20%5Ctimes%20%5Cpi%7D%20%7D%20)
![\sqrt[3]{ \frac{3000}{12.56637061} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3000%7D%7B12.56637061%7D%20%7D%20)
![\sqrt[3]{238.7324147 }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B238.7324147%20%7D%20)

to the nearest tenth place.

Answer:
0.049168726 light-years
Step-by-step explanation:
The apparent brightness of a star is
where
<em>L = luminosity of the star (related to the Sun)
</em>
<em>d = distance in ly (light-years)
</em>
The luminosity of Alpha Centauri A is 1.519 and its distance is 4.37 ly.
Hence the apparent brightness of Alpha Centauri A is
According to the inverse square law for light intensity
where
light intensity at distance
light intensity at distance
Let
be the distance we would have to place the 50-watt bulb, then replacing in the formula
Remark: It is worth noticing that Alpha Centauri A, though is the nearest star to the Sun, is not visible to the naked eye.
A=6a^2
A=6(5.5)^2
A=181.5
Hopefully I answered correctly.
Answer:
Step-by-step explanation:
this is the same equation, the system has infinitely many solutions