Answer:
No, it is not necessary for them to have same mass.
Explanation:
Let both bodies have a density d1 and d2 respectively.
Since their volumes are equal V1 = V2
we know that, https://tex.z-dn.net/?f=%5Cfrac%7Bmass%7D%7Bvolume%7D
Hence, d1 = and d2 =
Taking the ratio of densities,we get
This implies that unless the bodies have same densities, the mass of the two bodies will not be same.
Convection is the movement<span> of groups of molecules within </span>fluids<span> such as gases and liquids, including molten rock (rheid).</span>
Please,,,,,,,,,,,,,,,,,,,
Airida [17]
Answer:
bsjzbzkzznnzkzkznzjzbzbzbzbzbzbzbzbznznenenenenenene
Answer:
<h2>3.36J</h2>
Explanation:
Step one:
given data
mass m= 1.3kg
distance moved s= 2.8m
opposing frictional force= 0.34N
assume g= 9.81m/s^2
we know that work done= force *distance moved
1. work done to push the book= 1.55*2.8=4.34J
2. Work against friction = force of friction x distance
= 0.34*2.8=0.952J
Step two:
the work done on the book is the net work, which is
Network done= work done to push the book- Work against friction
Network done= 4.32-0.952=3.36J
<u>Therefore the work of the 1.55N 3.36J</u>
Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm