Answer:
M₂ = M then L₂ = L
M₂> M then L₂ = \frac{M}{M_{2}} L
Explanation:
This is a static equilibrium exercise, to solve it we must fix a reference system at the turning point, generally in the center of the rod. By convention counterclockwise turns are considered positive
∑ τ = 0
The mass of the rock is M and placed at a distance, L the mass of the rod M₁, is considered to be placed in its center of mass, which by uniform e is in its geometric center (x = 0) and the triangular mass M₂, with a distance L₂
The triangular shape of the second object determines that its mass can be considered concentrated in its geometric center (median) that tapers with a vertical line if the triangle is equilateral, the most used shape in measurements.
M L + M₁ 0 - m₂ L₂ = 0
M L - m₂ L₂ = 0
L₂ =
L
From this answer we have several possibilities
* if the two masses are equal then L₂ = L
* If the masses are different, with M₂> M then L₂ = \frac{M}{M_{2}} L
Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Answer:
13.18 m/s
Explanation:
Let the velocity of sports utility car is
-u as it is moving in opposite direction.
mc = 1200 kg, uc = 31.1 m/s
ms = 2830 kg, us = - u = ?
Using conservation of momentum
mc × uc + ms × us = 0
1200 × 31.1 - 2830 × u = 0
u = 13.18 m/s
Electrical energy is your answer.
Answer:
Explanation:
According to heisenberg uncertainty Principle
Δx Δp ≥ h / 4π , where Δx is uncertainty in position , Δp is uncertainty in momentum .
Given
Δx = 1 nm
Δp ≥ h /1nm x 4π
≥ 6.6 x 10⁻³⁴ / 10⁻⁹ x 4 π
≥ . 5254 x ⁻²⁵
h / λ ≥ . 5254 x ⁻²⁵
6.6 x 10⁻³⁴ /. 5254 x ⁻²⁵ ≥ λ
12.56 x 10⁻⁹ ≥ λ
longest wave length = 12.56 n m