I'm taking the liberty of editing your function <span>v = e5xey: It should be
</span>
<span>v = e^5x^ey, with " ^ " indicating exponentiation.
</span>
Did you mean e^(5x) or (e^5)x? I'll assume it's e^(5x).
The partial of v = e^(5x)e^y with respect to x is e^(5x)(5)*e^y, or 25x*e^y.
The partial of v = e^(5x)e^y with respect to y is e^(5x)e^y.
Answer:
The value of annuity is 
Step-by-step explanation:
From the question we are told that
The periodic payment is 
The interest rate is 
Frequency at which it occurs in a year is n = 4 (quarterly )
The number of years is 
The value of the annuity is mathematically represented as
(reference EDUCBA website)
substituting values
![P_v = 250 * [1 - (1 + \frac{0.05}{4} )^{-10 * 4} ] * [\frac{(1 + \frac{0.05}{4} )}{ \frac{0.08}{4} } ]](https://tex.z-dn.net/?f=P_v%20%20%3D%20250%20%2A%20%20%5B1%20%20-%20%281%20%2B%20%5Cfrac%7B0.05%7D%7B4%7D%20%29%5E%7B-10%20%2A%204%7D%20%5D%20%2A%20%5B%5Cfrac%7B%281%20%2B%20%5Cfrac%7B0.05%7D%7B4%7D%20%29%7D%7B%20%5Cfrac%7B0.08%7D%7B4%7D%20%7D%20%5D)
![P_v = 250 * [1 - (1.0125 )^{-40} ] * [\frac{(1.0125 )}{0.0125} ]](https://tex.z-dn.net/?f=P_v%20%20%3D%20%20250%20%2A%20%20%5B1%20%20-%20%281.0125%20%29%5E%7B-40%7D%20%5D%20%2A%20%5B%5Cfrac%7B%281.0125%20%29%7D%7B0.0125%7D%20%5D)
![P_v = 250 * [0.3916 ] * [\frac{(1.0125)}{0.0125} ]](https://tex.z-dn.net/?f=P_v%20%20%3D%20%20250%20%2A%20%20%5B0.3916%20%5D%20%2A%20%5B%5Cfrac%7B%281.0125%29%7D%7B0.0125%7D%20%5D)


Therefore, the slope of the line is 1/3. In case if you want the equation too.

Therefore, the equation is y=1/3x+2/3
Given:
The graphed point is (60,-20).
To find:
The ordered pair that would form a proportional relationship with the given point.
Solution:
If y is proportional to x, then



Where, k is the constant of proportionality.
For the given point,


For option (A),


For option (B),


For option (C),

.
The point (-30,10) gives the same value of the constant of proportionality. So, the point (-30,10) forms a proportional relationship with the given point.
Therefore, the correct option is C.