Answer:
The correct answer is: The ventromedial hypothalamus plays a role in satiety.
Explanation:
The hypothalamus is a part of the brain that controls many important bodily functions and connects both the nervous system with the endocrine system. The hypothalamus consists of several nuclei that have diverse functions and are located in 3 different regions.
The nucleus that plays a role in satiety is the ventromedial nucleus, terminating hunger and giving a sensation of fullness. It also plays a significant role in thermoregulation, among other things.
Neuropeptide Y, on the other hand, is a peptide that is released to make us feel hungry and encourage us to intake food (primarily carbohydrates).
Cholecystokinin is a hormone released by the small intestines after we had a meal, and its function is to improve digestion and make us feel full.
Fat cells DO release leptin, but the function of this hormone is to produce satiety, by stimulating anorexigenic (meaning they take hunger away) hormones and inhibiting orexigenic ones, like Neuropeptide Y.
Answer:
they are the temperate zones
Explanation:
The myosin head separates from actin as a result of ATP binding. The intrinsic ATPase activity of myosin then transforms ATP into ADP and Pi. The myosin head's angle is altered into a cocked state by the energy generated during ATP hydrolysis. The myosin head is now ready to move in the future.
The myosin protein is in a high-energy conformation when the head is cocked. At the end of the power stroke, the myosin head is in a low-energy position because this energy has been used up during the power stroke. ADP is released following the power stroke, but the cross-bridge is still there and actin and myosin are joined together.
Since ATP is readily available, the cross-bridge cycle can repeat, and muscular contraction can go on as long as ATP is there.
to know more about ATP hydrolysis visit
brainly.com/question/13056741
#SPJ4
Answer:
Explanation:
The double-stranded DNA molecule has the potential to store genetic information in either strand, although in most organisms <u>only one strand is used to encode any particular gene</u>.
The template strand is the non-coding strand. The coding strand of DNA is the non-template (mRNA-like) strand (see attachment).
Thus, genetic information is expressed by transcription of the non-coding (template) strand of DNA, <u>which produces an mRNA molecule that has the same sequence as the coding strand of DNA</u>. Therefore, if a mRNA is transcribed from the non-template strand, the genetic information will not be contained in that strand and it would not produce a correct protein.