Answer:
Hey shaikaadil700 !
<u> </u><u>Lubricating</u><u> </u> of rough surfaces reduces friction.
Explanation:
• Lubricating is the smoothening or polishing of the surfaces

The chemical reaction causes electricity to flow through the terminals to the load attached. Some of the acid in the battery remains on the plates as it flows through. When the battery is recharged the acid is returned to the liquid solution to provide more power later.
Answer:
conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the to
<h2>Answer: decreasing</h2>
An RC circuit is an electrical circuit composed of resistors and capacitors, where the charging time
of the circuit is proportional to the magnitude of the electrical resistance
and the capacity
of the capacitor.
As shown below:
In this context, the electrical resistance is the opposition to the flow of electrons when moving through a conductor.
Therefore:
<h2>When a capacitor is being charged in an RC circuit, the current flowing through a resistor <u>decreases</u>.</h2>
And the correct option is b.
Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s